Linear Algebra:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1967
|
Ausgabe: | Third Edition |
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
97 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The major change between the second and third edition is the separation of linear and multilinear algebra into two different volumes as well as the incorporation of a great deal of new material. However, the essential character of the book remains the same; in other words, the entire presentation continues to be based on an axiomatic treatment of vector spaces. In this first volume the restriction to finite dimensional vector spaces has been eliminated except for those results which do not hold in the infinite dimensional case. The restriction of the coefficient field to the real and complex numbers has also been removed and except for chapters VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient field of characteristic zero. In fact, many of the theorems are valid for modules over a commutative ring. Finally, a large number of problems of different degree of difficulty has been added. Chapter I deals with the general properties of a vector space. The topology of a real vector space of finite dimension is axiomatically characterized in an additional paragraph |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783662006726 9783662006740 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-662-00672-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423179 | ||
003 | DE-604 | ||
005 | 20200519 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1967 |||| o||u| ||||||eng d | ||
020 | |a 9783662006726 |c Online |9 978-3-662-00672-6 | ||
020 | |a 9783662006740 |c Print |9 978-3-662-00674-0 | ||
024 | 7 | |a 10.1007/978-3-662-00672-6 |2 doi | |
035 | |a (OCoLC)863944359 | ||
035 | |a (DE-599)BVBBV042423179 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Greub, Werner Hildbert |d 1925-1991 |e Verfasser |0 (DE-588)123729912 |4 aut | |
245 | 1 | 0 | |a Linear Algebra |c by W. H. Greub |
250 | |a Third Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1967 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 97 |x 0072-7830 | |
500 | |a The major change between the second and third edition is the separation of linear and multilinear algebra into two different volumes as well as the incorporation of a great deal of new material. However, the essential character of the book remains the same; in other words, the entire presentation continues to be based on an axiomatic treatment of vector spaces. In this first volume the restriction to finite dimensional vector spaces has been eliminated except for those results which do not hold in the infinite dimensional case. The restriction of the coefficient field to the real and complex numbers has also been removed and except for chapters VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient field of characteristic zero. In fact, many of the theorems are valid for modules over a commutative ring. Finally, a large number of problems of different degree of difficulty has been added. Chapter I deals with the general properties of a vector space. The topology of a real vector space of finite dimension is axiomatically characterized in an additional paragraph | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-00672-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858596 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098617225216 |
---|---|
any_adam_object | |
author | Greub, Werner Hildbert 1925-1991 |
author_GND | (DE-588)123729912 |
author_facet | Greub, Werner Hildbert 1925-1991 |
author_role | aut |
author_sort | Greub, Werner Hildbert 1925-1991 |
author_variant | w h g wh whg |
building | Verbundindex |
bvnumber | BV042423179 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863944359 (DE-599)BVBBV042423179 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-00672-6 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03020nmm a2200505zcb4500</leader><controlfield tag="001">BV042423179</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200519 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1967 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662006726</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-00672-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662006740</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-00674-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-00672-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863944359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423179</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Greub, Werner Hildbert</subfield><subfield code="d">1925-1991</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123729912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Algebra</subfield><subfield code="c">by W. H. Greub</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1967</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">97</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The major change between the second and third edition is the separation of linear and multilinear algebra into two different volumes as well as the incorporation of a great deal of new material. However, the essential character of the book remains the same; in other words, the entire presentation continues to be based on an axiomatic treatment of vector spaces. In this first volume the restriction to finite dimensional vector spaces has been eliminated except for those results which do not hold in the infinite dimensional case. The restriction of the coefficient field to the real and complex numbers has also been removed and except for chapters VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient field of characteristic zero. In fact, many of the theorems are valid for modules over a commutative ring. Finally, a large number of problems of different degree of difficulty has been added. Chapter I deals with the general properties of a vector space. The topology of a real vector space of finite dimension is axiomatically characterized in an additional paragraph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-00672-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858596</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV042423179 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783662006726 9783662006740 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858596 |
oclc_num | 863944359 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1967 |
publishDateSearch | 1967 |
publishDateSort | 1967 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Greub, Werner Hildbert 1925-1991 Verfasser (DE-588)123729912 aut Linear Algebra by W. H. Greub Third Edition Berlin, Heidelberg Springer Berlin Heidelberg 1967 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 97 0072-7830 The major change between the second and third edition is the separation of linear and multilinear algebra into two different volumes as well as the incorporation of a great deal of new material. However, the essential character of the book remains the same; in other words, the entire presentation continues to be based on an axiomatic treatment of vector spaces. In this first volume the restriction to finite dimensional vector spaces has been eliminated except for those results which do not hold in the infinite dimensional case. The restriction of the coefficient field to the real and complex numbers has also been removed and except for chapters VII to XI, § 5 of chapter I and § 8, chapter IV we allow any coefficient field of characteristic zero. In fact, many of the theorems are valid for modules over a commutative ring. Finally, a large number of problems of different degree of difficulty has been added. Chapter I deals with the general properties of a vector space. The topology of a real vector space of finite dimension is axiomatically characterized in an additional paragraph Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Lineare Algebra (DE-588)4035811-2 s 3\p DE-604 https://doi.org/10.1007/978-3-662-00672-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Greub, Werner Hildbert 1925-1991 Linear Algebra Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4151278-9 (DE-588)4123623-3 |
title | Linear Algebra |
title_auth | Linear Algebra |
title_exact_search | Linear Algebra |
title_full | Linear Algebra by W. H. Greub |
title_fullStr | Linear Algebra by W. H. Greub |
title_full_unstemmed | Linear Algebra by W. H. Greub |
title_short | Linear Algebra |
title_sort | linear algebra |
topic | Mathematics Mathematics, general Mathematik Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Lineare Algebra Einführung Lehrbuch |
url | https://doi.org/10.1007/978-3-662-00672-6 |
work_keys_str_mv | AT greubwernerhildbert linearalgebra |