Asymptotic Behavior and Stability Problems in Ordinary Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1963
|
Ausgabe: | Second Edition |
Schriftenreihe: | Ergebnisse der Mathematik und Ihrer Grenzgebiete
16 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This second edition, which has become necessary within so short a time, presents no major changes. However new results in the line of work of the author and of J. K. HaIe have made it advisable to rewrite seetion (8.5). Also, some references to most recent work have been added. LAMBERTO CESARI University of Michigan June 1962 Ann Arbor Preface to the First Edition In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matie controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783662001059 9783662001073 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-662-00105-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423175 | ||
003 | DE-604 | ||
005 | 20151106 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1963 |||| o||u| ||||||eng d | ||
020 | |a 9783662001059 |c Online |9 978-3-662-00105-9 | ||
020 | |a 9783662001073 |c Print |9 978-3-662-00107-3 | ||
024 | 7 | |a 10.1007/978-3-662-00105-9 |2 doi | |
035 | |a (OCoLC)1184486854 | ||
035 | |a (DE-599)BVBBV042423175 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cesari, Lamberto |d 1910-1990 |e Verfasser |0 (DE-588)118666169 |4 aut | |
245 | 1 | 0 | |a Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |c by Lamberto Cesari |
250 | |a Second Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1963 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und Ihrer Grenzgebiete |v 16 |x 0071-1136 | |
500 | |a This second edition, which has become necessary within so short a time, presents no major changes. However new results in the line of work of the author and of J. K. HaIe have made it advisable to rewrite seetion (8.5). Also, some references to most recent work have been added. LAMBERTO CESARI University of Michigan June 1962 Ann Arbor Preface to the First Edition In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matie controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Methode |0 (DE-588)4287476-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 1 | 1 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 2 | 1 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 3 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-00105-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858592 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098605690880 |
---|---|
any_adam_object | |
author | Cesari, Lamberto 1910-1990 |
author_GND | (DE-588)118666169 |
author_facet | Cesari, Lamberto 1910-1990 |
author_role | aut |
author_sort | Cesari, Lamberto 1910-1990 |
author_variant | l c lc |
building | Verbundindex |
bvnumber | BV042423175 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184486854 (DE-599)BVBBV042423175 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-00105-9 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03728nmm a2200661zcb4500</leader><controlfield tag="001">BV042423175</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151106 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1963 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662001059</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-00105-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662001073</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-00107-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-00105-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184486854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423175</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cesari, Lamberto</subfield><subfield code="d">1910-1990</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118666169</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Behavior and Stability Problems in Ordinary Differential Equations</subfield><subfield code="c">by Lamberto Cesari</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1963</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und Ihrer Grenzgebiete</subfield><subfield code="v">16</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This second edition, which has become necessary within so short a time, presents no major changes. However new results in the line of work of the author and of J. K. HaIe have made it advisable to rewrite seetion (8.5). Also, some references to most recent work have been added. LAMBERTO CESARI University of Michigan June 1962 Ann Arbor Preface to the First Edition In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matie controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-00105-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858592</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423175 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783662001059 9783662001073 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858592 |
oclc_num | 1184486854 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1963 |
publishDateSearch | 1963 |
publishDateSort | 1963 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und Ihrer Grenzgebiete |
spelling | Cesari, Lamberto 1910-1990 Verfasser (DE-588)118666169 aut Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari Second Edition Berlin, Heidelberg Springer Berlin Heidelberg 1963 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und Ihrer Grenzgebiete 16 0071-1136 This second edition, which has become necessary within so short a time, presents no major changes. However new results in the line of work of the author and of J. K. HaIe have made it advisable to rewrite seetion (8.5). Also, some references to most recent work have been added. LAMBERTO CESARI University of Michigan June 1962 Ann Arbor Preface to the First Edition In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matie controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields Mathematics Mathematics, general Mathematik Asymptotik (DE-588)4126634-1 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Asymptotische Methode (DE-588)4287476-2 gnd rswk-swf Stabilität (DE-588)4056693-6 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Stabilität (DE-588)4056693-6 s 1\p DE-604 Asymptotische Methode (DE-588)4287476-2 s 2\p DE-604 Gewöhnliche Differentialgleichung (DE-588)4020929-5 s 3\p DE-604 Asymptotik (DE-588)4126634-1 s 4\p DE-604 https://doi.org/10.1007/978-3-662-00105-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cesari, Lamberto 1910-1990 Asymptotic Behavior and Stability Problems in Ordinary Differential Equations Mathematics Mathematics, general Mathematik Asymptotik (DE-588)4126634-1 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Asymptotische Methode (DE-588)4287476-2 gnd Stabilität (DE-588)4056693-6 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4126634-1 (DE-588)4020929-5 (DE-588)4287476-2 (DE-588)4056693-6 (DE-588)4012249-9 |
title | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_auth | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_exact_search | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_full | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari |
title_fullStr | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari |
title_full_unstemmed | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari |
title_short | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_sort | asymptotic behavior and stability problems in ordinary differential equations |
topic | Mathematics Mathematics, general Mathematik Asymptotik (DE-588)4126634-1 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Asymptotische Methode (DE-588)4287476-2 gnd Stabilität (DE-588)4056693-6 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Asymptotik Gewöhnliche Differentialgleichung Asymptotische Methode Stabilität Differentialgleichung |
url | https://doi.org/10.1007/978-3-662-00105-9 |
work_keys_str_mv | AT cesarilamberto asymptoticbehaviorandstabilityproblemsinordinarydifferentialequations |