The Theory of Matrices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1933
|
Schriftenreihe: | Ergebnisse der Mathematik und Ihrer Grenƶgebiete
5 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Matric algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linear associative algebra (hypercomplex systems), linear homogeneous trans formations and linear vector functions are various manifestations of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry etc. make use of certain portions of this subject. Indeed, many of the fundamental properties of matrices were first discovered in the notation of a particular application, and not until much later re cognized in their generality. It was not possible within the scope of this book to give a completely detailed account of matric theory, nor is it intended to make it an authoritative history of the subject. It has been the desire of the writer to point out the various directions in which the theory leads so that the reader may in a general way see its extent. While some attempt has been made to unify certain parts of the theory, in general the material has been taken as it was found in the literature, the topics discussed in detail being those in which extensive research has taken place. For most of the important theorems a brief and elegant proof has sooner or later been found. It is hoped that most of these have been incorporated in the text, and that the reader will derive as much plea sure from reading them as did the writer |
Beschreibung: | 1 Online-Ressource (V, 111 p) |
ISBN: | 9783642992346 9783642984211 |
DOI: | 10.1007/978-3-642-99234-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423165 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1933 |||| o||u| ||||||eng d | ||
020 | |a 9783642992346 |c Online |9 978-3-642-99234-6 | ||
020 | |a 9783642984211 |c Print |9 978-3-642-98421-1 | ||
024 | 7 | |a 10.1007/978-3-642-99234-6 |2 doi | |
035 | |a (OCoLC)1002234196 | ||
035 | |a (DE-599)BVBBV042423165 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mac Duffee, C. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Theory of Matrices |c by C. C. Mac Duffee |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1933 | |
300 | |a 1 Online-Ressource (V, 111 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und Ihrer Grenƶgebiete |v 5 | |
500 | |a Matric algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linear associative algebra (hypercomplex systems), linear homogeneous trans formations and linear vector functions are various manifestations of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry etc. make use of certain portions of this subject. Indeed, many of the fundamental properties of matrices were first discovered in the notation of a particular application, and not until much later re cognized in their generality. It was not possible within the scope of this book to give a completely detailed account of matric theory, nor is it intended to make it an authoritative history of the subject. It has been the desire of the writer to point out the various directions in which the theory leads so that the reader may in a general way see its extent. While some attempt has been made to unify certain parts of the theory, in general the material has been taken as it was found in the literature, the topics discussed in detail being those in which extensive research has taken place. For most of the important theorems a brief and elegant proof has sooner or later been found. It is hoped that most of these have been incorporated in the text, and that the reader will derive as much plea sure from reading them as did the writer | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizenrechnung |0 (DE-588)4126963-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizentheorie |0 (DE-588)4128970-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-99234-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858582 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098594156544 |
---|---|
any_adam_object | |
author | Mac Duffee, C. C. |
author_facet | Mac Duffee, C. C. |
author_role | aut |
author_sort | Mac Duffee, C. C. |
author_variant | d c c m dcc dccm |
building | Verbundindex |
bvnumber | BV042423165 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1002234196 (DE-599)BVBBV042423165 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-99234-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03649nmm a2200589zcb4500</leader><controlfield tag="001">BV042423165</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1933 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642992346</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-99234-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642984211</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-98421-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-99234-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002234196</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423165</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mac Duffee, C. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Theory of Matrices</subfield><subfield code="c">by C. C. Mac Duffee</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1933</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (V, 111 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und Ihrer Grenƶgebiete</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Matric algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linear associative algebra (hypercomplex systems), linear homogeneous trans formations and linear vector functions are various manifestations of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry etc. make use of certain portions of this subject. Indeed, many of the fundamental properties of matrices were first discovered in the notation of a particular application, and not until much later re cognized in their generality. It was not possible within the scope of this book to give a completely detailed account of matric theory, nor is it intended to make it an authoritative history of the subject. It has been the desire of the writer to point out the various directions in which the theory leads so that the reader may in a general way see its extent. While some attempt has been made to unify certain parts of the theory, in general the material has been taken as it was found in the literature, the topics discussed in detail being those in which extensive research has taken place. For most of the important theorems a brief and elegant proof has sooner or later been found. It is hoped that most of these have been incorporated in the text, and that the reader will derive as much plea sure from reading them as did the writer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-99234-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858582</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423165 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642992346 9783642984211 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858582 |
oclc_num | 1002234196 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (V, 111 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1933 |
publishDateSearch | 1933 |
publishDateSort | 1933 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und Ihrer Grenƶgebiete |
spelling | Mac Duffee, C. C. Verfasser aut The Theory of Matrices by C. C. Mac Duffee Berlin, Heidelberg Springer Berlin Heidelberg 1933 1 Online-Ressource (V, 111 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und Ihrer Grenƶgebiete 5 Matric algebra is a mathematical abstraction underlying many seemingly diverse theories. Thus bilinear and quadratic forms, linear associative algebra (hypercomplex systems), linear homogeneous trans formations and linear vector functions are various manifestations of matric algebra. Other branches of mathematics as number theory, differential and integral equations, continued fractions, projective geometry etc. make use of certain portions of this subject. Indeed, many of the fundamental properties of matrices were first discovered in the notation of a particular application, and not until much later re cognized in their generality. It was not possible within the scope of this book to give a completely detailed account of matric theory, nor is it intended to make it an authoritative history of the subject. It has been the desire of the writer to point out the various directions in which the theory leads so that the reader may in a general way see its extent. While some attempt has been made to unify certain parts of the theory, in general the material has been taken as it was found in the literature, the topics discussed in detail being those in which extensive research has taken place. For most of the important theorems a brief and elegant proof has sooner or later been found. It is hoped that most of these have been incorporated in the text, and that the reader will derive as much plea sure from reading them as did the writer Mathematics Mathematics, general Mathematik Theorie (DE-588)4059787-8 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 s 1\p DE-604 Theorie (DE-588)4059787-8 s 2\p DE-604 Matrizenrechnung (DE-588)4126963-9 s 3\p DE-604 Matrix Mathematik (DE-588)4037968-1 s 4\p DE-604 https://doi.org/10.1007/978-3-642-99234-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mac Duffee, C. C. The Theory of Matrices Mathematics Mathematics, general Mathematik Theorie (DE-588)4059787-8 gnd Matrix Mathematik (DE-588)4037968-1 gnd Matrizenrechnung (DE-588)4126963-9 gnd Matrizentheorie (DE-588)4128970-5 gnd |
subject_GND | (DE-588)4059787-8 (DE-588)4037968-1 (DE-588)4126963-9 (DE-588)4128970-5 |
title | The Theory of Matrices |
title_auth | The Theory of Matrices |
title_exact_search | The Theory of Matrices |
title_full | The Theory of Matrices by C. C. Mac Duffee |
title_fullStr | The Theory of Matrices by C. C. Mac Duffee |
title_full_unstemmed | The Theory of Matrices by C. C. Mac Duffee |
title_short | The Theory of Matrices |
title_sort | the theory of matrices |
topic | Mathematics Mathematics, general Mathematik Theorie (DE-588)4059787-8 gnd Matrix Mathematik (DE-588)4037968-1 gnd Matrizenrechnung (DE-588)4126963-9 gnd Matrizentheorie (DE-588)4128970-5 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Theorie Matrix Mathematik Matrizenrechnung Matrizentheorie |
url | https://doi.org/10.1007/978-3-642-99234-6 |
work_keys_str_mv | AT macduffeecc thetheoryofmatrices |