Basic Algebraic Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1974
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
213 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this domain. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. Around 1910 Klein wrote: "When I was a student, Abelian functions*- as an after-effect of Jacobi's tradition- were regarded as the undisputed summit of mathematics, and each of us, as a matter of course, had the ambition to forge ahead in this field. And now? The young generation hardly know what Abelian functions are." (Vorlesungen tiber die Entwicklung der Mathematik im XIX. Jahrhundert, Springer-Verlag, Berlin 1926, Seite 312). The style of thinking that was fully developed in algebraic geometry at that time was too far removed from the set-theoretical and axiomatic spirit, which then determined the development of mathematics. Several decades had to lapse before the rise of the theory of topological, differentiable and complex manifolds, the general theory of fields, the theory of ideals in sufficiently general rings, and only then it became possible to construct algebraic geometry on the basis of the principles of set-theoretical mathematics. Around the middle of the present century algebraic geometry had undergone to a large extent such a reshaping process. As a result, it can again lay claim to the position it once occupied in mathematics |
Beschreibung: | 1 Online-Ressource (XVI, 440 p) |
ISBN: | 9783642962004 9783540082644 |
DOI: | 10.1007/978-3-642-96200-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423138 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1974 |||| o||u| ||||||eng d | ||
020 | |a 9783642962004 |c Online |9 978-3-642-96200-4 | ||
020 | |a 9783540082644 |c Print |9 978-3-540-08264-4 | ||
024 | 7 | |a 10.1007/978-3-642-96200-4 |2 doi | |
035 | |a (OCoLC)1185199070 | ||
035 | |a (DE-599)BVBBV042423138 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Shafarevich, Igor R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Basic Algebraic Geometry |c by Igor R. Shafarevich |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1974 | |
300 | |a 1 Online-Ressource (XVI, 440 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 213 | |
500 | |a Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this domain. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. Around 1910 Klein wrote: "When I was a student, Abelian functions*- as an after-effect of Jacobi's tradition- were regarded as the undisputed summit of mathematics, and each of us, as a matter of course, had the ambition to forge ahead in this field. And now? The young generation hardly know what Abelian functions are." (Vorlesungen tiber die Entwicklung der Mathematik im XIX. Jahrhundert, Springer-Verlag, Berlin 1926, Seite 312). The style of thinking that was fully developed in algebraic geometry at that time was too far removed from the set-theoretical and axiomatic spirit, which then determined the development of mathematics. Several decades had to lapse before the rise of the theory of topological, differentiable and complex manifolds, the general theory of fields, the theory of ideals in sufficiently general rings, and only then it became possible to construct algebraic geometry on the basis of the principles of set-theoretical mathematics. Around the middle of the present century algebraic geometry had undergone to a large extent such a reshaping process. As a result, it can again lay claim to the position it once occupied in mathematics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 213 |w (DE-604)BV049758308 |9 213 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-96200-4 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive |
Datensatz im Suchindex
_version_ | 1805079046252396544 |
---|---|
adam_text | |
any_adam_object | |
author | Shafarevich, Igor R. |
author_facet | Shafarevich, Igor R. |
author_role | aut |
author_sort | Shafarevich, Igor R. |
author_variant | i r s ir irs |
building | Verbundindex |
bvnumber | BV042423138 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185199070 (DE-599)BVBBV042423138 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-96200-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042423138</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1974 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642962004</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-96200-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540082644</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-08264-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-96200-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185199070</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423138</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shafarevich, Igor R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic Algebraic Geometry</subfield><subfield code="c">by Igor R. Shafarevich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 440 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">213</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this domain. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. Around 1910 Klein wrote: "When I was a student, Abelian functions*- as an after-effect of Jacobi's tradition- were regarded as the undisputed summit of mathematics, and each of us, as a matter of course, had the ambition to forge ahead in this field. And now? The young generation hardly know what Abelian functions are." (Vorlesungen tiber die Entwicklung der Mathematik im XIX. Jahrhundert, Springer-Verlag, Berlin 1926, Seite 312). The style of thinking that was fully developed in algebraic geometry at that time was too far removed from the set-theoretical and axiomatic spirit, which then determined the development of mathematics. Several decades had to lapse before the rise of the theory of topological, differentiable and complex manifolds, the general theory of fields, the theory of ideals in sufficiently general rings, and only then it became possible to construct algebraic geometry on the basis of the principles of set-theoretical mathematics. Around the middle of the present century algebraic geometry had undergone to a large extent such a reshaping process. As a result, it can again lay claim to the position it once occupied in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">213</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">213</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-96200-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042423138 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:45Z |
institution | BVB |
isbn | 9783642962004 9783540082644 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858555 |
oclc_num | 1185199070 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 440 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Shafarevich, Igor R. Verfasser aut Basic Algebraic Geometry by Igor R. Shafarevich Berlin, Heidelberg Springer Berlin Heidelberg 1974 1 Online-Ressource (XVI, 440 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 213 Algebraic geometry occupied a central place in the mathematics of the last century. The deepest results of Abel, Riemann, Weierstrass, many of the most important papers of Klein and Poincare belong to this domain. At the end of the last and the beginning of the present century the attitude towards algebraic geometry changed abruptly. Around 1910 Klein wrote: "When I was a student, Abelian functions*- as an after-effect of Jacobi's tradition- were regarded as the undisputed summit of mathematics, and each of us, as a matter of course, had the ambition to forge ahead in this field. And now? The young generation hardly know what Abelian functions are." (Vorlesungen tiber die Entwicklung der Mathematik im XIX. Jahrhundert, Springer-Verlag, Berlin 1926, Seite 312). The style of thinking that was fully developed in algebraic geometry at that time was too far removed from the set-theoretical and axiomatic spirit, which then determined the development of mathematics. Several decades had to lapse before the rise of the theory of topological, differentiable and complex manifolds, the general theory of fields, the theory of ideals in sufficiently general rings, and only then it became possible to construct algebraic geometry on the basis of the principles of set-theoretical mathematics. Around the middle of the present century algebraic geometry had undergone to a large extent such a reshaping process. As a result, it can again lay claim to the position it once occupied in mathematics Mathematics Mathematics, general Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Algebraische Geometrie (DE-588)4001161-6 s 2\p DE-604 Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 213 (DE-604)BV049758308 213 https://doi.org/10.1007/978-3-642-96200-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shafarevich, Igor R. Basic Algebraic Geometry Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics Mathematics Mathematics, general Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4123623-3 |
title | Basic Algebraic Geometry |
title_auth | Basic Algebraic Geometry |
title_exact_search | Basic Algebraic Geometry |
title_full | Basic Algebraic Geometry by Igor R. Shafarevich |
title_fullStr | Basic Algebraic Geometry by Igor R. Shafarevich |
title_full_unstemmed | Basic Algebraic Geometry by Igor R. Shafarevich |
title_short | Basic Algebraic Geometry |
title_sort | basic algebraic geometry |
topic | Mathematics Mathematics, general Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Algebraische Geometrie Lehrbuch |
url | https://doi.org/10.1007/978-3-642-96200-4 |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT shafarevichigorr basicalgebraicgeometry |