Intrinsic Geometry of Biological Surface Growth:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1986
|
Schriftenreihe: | Lecture Notes in Biomathematics
67 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1.1 General Introduction The work which comprises this essay formed part of a multidiscip linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana tomical point of view, the work explores the use of the surface geo metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports the measurement of the surface curvature of the ferret brain during the early stages of folding. The use of sur face curvatures and other parameters of differential geometry in the formulation of theoretical models of cortical folding is dis cussed |
Beschreibung: | 1 Online-Ressource (IV, 132 p) |
ISBN: | 9783642933202 9783540164821 |
ISSN: | 0341-633X |
DOI: | 10.1007/978-3-642-93320-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423127 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1986 |||| o||u| ||||||eng d | ||
020 | |a 9783642933202 |c Online |9 978-3-642-93320-2 | ||
020 | |a 9783540164821 |c Print |9 978-3-540-16482-1 | ||
024 | 7 | |a 10.1007/978-3-642-93320-2 |2 doi | |
035 | |a (OCoLC)1185216797 | ||
035 | |a (DE-599)BVBBV042423127 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Todd, Philip H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Intrinsic Geometry of Biological Surface Growth |c by Philip H. Todd |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1986 | |
300 | |a 1 Online-Ressource (IV, 132 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Biomathematics |v 67 |x 0341-633X | |
500 | |a 1.1 General Introduction The work which comprises this essay formed part of a multidiscip linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana tomical point of view, the work explores the use of the surface geo metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports the measurement of the surface curvature of the ferret brain during the early stages of folding. The use of sur face curvatures and other parameters of differential geometry in the formulation of theoretical models of cortical folding is dis cussed | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Statistics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematical and Computational Biology | |
650 | 4 | |a Statistics for Life Sciences, Medicine, Health Sciences | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Großhirnrinde |0 (DE-588)4072114-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gehirn |0 (DE-588)4019752-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entwicklung |0 (DE-588)4113450-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tiere |0 (DE-588)4060087-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Krümmung |0 (DE-588)4128765-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Krümmung |0 (DE-588)4128765-4 |D s |
689 | 0 | 2 | |a Großhirnrinde |0 (DE-588)4072114-0 |D s |
689 | 0 | 3 | |a Tiere |0 (DE-588)4060087-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gehirn |0 (DE-588)4019752-9 |D s |
689 | 1 | 1 | |a Entwicklung |0 (DE-588)4113450-3 |D s |
689 | 1 | 2 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-93320-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858544 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098491396096 |
---|---|
any_adam_object | |
author | Todd, Philip H. |
author_facet | Todd, Philip H. |
author_role | aut |
author_sort | Todd, Philip H. |
author_variant | p h t ph pht |
building | Verbundindex |
bvnumber | BV042423127 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185216797 (DE-599)BVBBV042423127 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-93320-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03749nmm a2200673zcb4500</leader><controlfield tag="001">BV042423127</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642933202</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-93320-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540164821</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-16482-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-93320-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185216797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423127</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Todd, Philip H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intrinsic Geometry of Biological Surface Growth</subfield><subfield code="c">by Philip H. Todd</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IV, 132 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Biomathematics</subfield><subfield code="v">67</subfield><subfield code="x">0341-633X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.1 General Introduction The work which comprises this essay formed part of a multidiscip linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana tomical point of view, the work explores the use of the surface geo metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports the measurement of the surface curvature of the ferret brain during the early stages of folding. The use of sur face curvatures and other parameters of differential geometry in the formulation of theoretical models of cortical folding is dis cussed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Life Sciences, Medicine, Health Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Großhirnrinde</subfield><subfield code="0">(DE-588)4072114-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entwicklung</subfield><subfield code="0">(DE-588)4113450-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tiere</subfield><subfield code="0">(DE-588)4060087-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Krümmung</subfield><subfield code="0">(DE-588)4128765-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Krümmung</subfield><subfield code="0">(DE-588)4128765-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Großhirnrinde</subfield><subfield code="0">(DE-588)4072114-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Tiere</subfield><subfield code="0">(DE-588)4060087-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Entwicklung</subfield><subfield code="0">(DE-588)4113450-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-93320-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858544</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423127 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642933202 9783540164821 |
issn | 0341-633X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858544 |
oclc_num | 1185216797 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IV, 132 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Biomathematics |
spelling | Todd, Philip H. Verfasser aut Intrinsic Geometry of Biological Surface Growth by Philip H. Todd Berlin, Heidelberg Springer Berlin Heidelberg 1986 1 Online-Ressource (IV, 132 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Biomathematics 67 0341-633X 1.1 General Introduction The work which comprises this essay formed part of a multidiscip linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana tomical point of view, the work explores the use of the surface geo metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports the measurement of the surface curvature of the ferret brain during the early stages of folding. The use of sur face curvatures and other parameters of differential geometry in the formulation of theoretical models of cortical folding is dis cussed Mathematics Geometry Topology Statistics Applications of Mathematics Mathematical and Computational Biology Statistics for Life Sciences, Medicine, Health Sciences Mathematik Statistik Großhirnrinde (DE-588)4072114-0 gnd rswk-swf Gehirn (DE-588)4019752-9 gnd rswk-swf Entwicklung (DE-588)4113450-3 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Tiere (DE-588)4060087-7 gnd rswk-swf Krümmung (DE-588)4128765-4 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Krümmung (DE-588)4128765-4 s Großhirnrinde (DE-588)4072114-0 s Tiere (DE-588)4060087-7 s 1\p DE-604 Gehirn (DE-588)4019752-9 s Entwicklung (DE-588)4113450-3 s 2\p DE-604 https://doi.org/10.1007/978-3-642-93320-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Todd, Philip H. Intrinsic Geometry of Biological Surface Growth Mathematics Geometry Topology Statistics Applications of Mathematics Mathematical and Computational Biology Statistics for Life Sciences, Medicine, Health Sciences Mathematik Statistik Großhirnrinde (DE-588)4072114-0 gnd Gehirn (DE-588)4019752-9 gnd Entwicklung (DE-588)4113450-3 gnd Differentialgeometrie (DE-588)4012248-7 gnd Tiere (DE-588)4060087-7 gnd Krümmung (DE-588)4128765-4 gnd |
subject_GND | (DE-588)4072114-0 (DE-588)4019752-9 (DE-588)4113450-3 (DE-588)4012248-7 (DE-588)4060087-7 (DE-588)4128765-4 |
title | Intrinsic Geometry of Biological Surface Growth |
title_auth | Intrinsic Geometry of Biological Surface Growth |
title_exact_search | Intrinsic Geometry of Biological Surface Growth |
title_full | Intrinsic Geometry of Biological Surface Growth by Philip H. Todd |
title_fullStr | Intrinsic Geometry of Biological Surface Growth by Philip H. Todd |
title_full_unstemmed | Intrinsic Geometry of Biological Surface Growth by Philip H. Todd |
title_short | Intrinsic Geometry of Biological Surface Growth |
title_sort | intrinsic geometry of biological surface growth |
topic | Mathematics Geometry Topology Statistics Applications of Mathematics Mathematical and Computational Biology Statistics for Life Sciences, Medicine, Health Sciences Mathematik Statistik Großhirnrinde (DE-588)4072114-0 gnd Gehirn (DE-588)4019752-9 gnd Entwicklung (DE-588)4113450-3 gnd Differentialgeometrie (DE-588)4012248-7 gnd Tiere (DE-588)4060087-7 gnd Krümmung (DE-588)4128765-4 gnd |
topic_facet | Mathematics Geometry Topology Statistics Applications of Mathematics Mathematical and Computational Biology Statistics for Life Sciences, Medicine, Health Sciences Mathematik Statistik Großhirnrinde Gehirn Entwicklung Differentialgeometrie Tiere Krümmung |
url | https://doi.org/10.1007/978-3-642-93320-2 |
work_keys_str_mv | AT toddphiliph intrinsicgeometryofbiologicalsurfacegrowth |