Mathematical Models in Cell Biology and Cancer Chemotherapy:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1979
|
Schriftenreihe: | Lecture Notes in Biomathematics
30 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9 |
Beschreibung: | 1 Online-Ressource (IX, 431p) |
ISBN: | 9783642931260 9783540097099 |
ISSN: | 0341-633X |
DOI: | 10.1007/978-3-642-93126-0 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423118 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1979 xx o|||| 00||| eng d | ||
020 | |a 9783642931260 |c Online |9 978-3-642-93126-0 | ||
020 | |a 9783540097099 |c Print |9 978-3-540-09709-9 | ||
024 | 7 | |a 10.1007/978-3-642-93126-0 |2 doi | |
035 | |a (OCoLC)863862702 | ||
035 | |a (DE-599)BVBBV042423118 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Eisen, Martin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Models in Cell Biology and Cancer Chemotherapy |c by Martin Eisen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1979 | |
300 | |a 1 Online-Ressource (IX, 431p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Biomathematics |v 30 |x 0341-633X | |
500 | |a The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Cytostatikum |0 (DE-588)4068347-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cytologie |0 (DE-588)4070177-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Krebs |g Medizin |0 (DE-588)4073781-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemotherapie |0 (DE-588)4127083-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Krebs |g Medizin |0 (DE-588)4073781-0 |D s |
689 | 0 | 1 | |a Chemotherapie |0 (DE-588)4127083-6 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Cytologie |0 (DE-588)4070177-3 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Cytostatikum |0 (DE-588)4068347-3 |D s |
689 | 2 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-93126-0 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858535 |
Datensatz im Suchindex
_version_ | 1823607507188187136 |
---|---|
adam_text | |
any_adam_object | |
author | Eisen, Martin |
author_facet | Eisen, Martin |
author_role | aut |
author_sort | Eisen, Martin |
author_variant | m e me |
building | Verbundindex |
bvnumber | BV042423118 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863862702 (DE-599)BVBBV042423118 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-93126-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV042423118</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1979 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642931260</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-93126-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540097099</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-09709-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-93126-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863862702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423118</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eisen, Martin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Models in Cell Biology and Cancer Chemotherapy</subfield><subfield code="c">by Martin Eisen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 431p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Biomathematics</subfield><subfield code="v">30</subfield><subfield code="x">0341-633X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cytostatikum</subfield><subfield code="0">(DE-588)4068347-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cytologie</subfield><subfield code="0">(DE-588)4070177-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Krebs</subfield><subfield code="g">Medizin</subfield><subfield code="0">(DE-588)4073781-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemotherapie</subfield><subfield code="0">(DE-588)4127083-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Krebs</subfield><subfield code="g">Medizin</subfield><subfield code="0">(DE-588)4073781-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemotherapie</subfield><subfield code="0">(DE-588)4127083-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Cytologie</subfield><subfield code="0">(DE-588)4070177-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Cytostatikum</subfield><subfield code="0">(DE-588)4068347-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-93126-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858535</subfield></datafield></record></collection> |
id | DE-604.BV042423118 |
illustrated | Not Illustrated |
indexdate | 2025-02-09T19:00:42Z |
institution | BVB |
isbn | 9783642931260 9783540097099 |
issn | 0341-633X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858535 |
oclc_num | 863862702 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 431p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Biomathematics |
spelling | Eisen, Martin Verfasser aut Mathematical Models in Cell Biology and Cancer Chemotherapy by Martin Eisen Berlin, Heidelberg Springer Berlin Heidelberg 1979 1 Online-Ressource (IX, 431p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Biomathematics 30 0341-633X The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9 Mathematics Mathematics, general Mathematik Cytostatikum (DE-588)4068347-3 gnd rswk-swf Cytologie (DE-588)4070177-3 gnd rswk-swf Krebs Medizin (DE-588)4073781-0 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Chemotherapie (DE-588)4127083-6 gnd rswk-swf Krebs Medizin (DE-588)4073781-0 s Chemotherapie (DE-588)4127083-6 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Cytologie (DE-588)4070177-3 s 2\p DE-604 Cytostatikum (DE-588)4068347-3 s 3\p DE-604 https://doi.org/10.1007/978-3-642-93126-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eisen, Martin Mathematical Models in Cell Biology and Cancer Chemotherapy Mathematics Mathematics, general Mathematik Cytostatikum (DE-588)4068347-3 gnd Cytologie (DE-588)4070177-3 gnd Krebs Medizin (DE-588)4073781-0 gnd Mathematisches Modell (DE-588)4114528-8 gnd Chemotherapie (DE-588)4127083-6 gnd |
subject_GND | (DE-588)4068347-3 (DE-588)4070177-3 (DE-588)4073781-0 (DE-588)4114528-8 (DE-588)4127083-6 |
title | Mathematical Models in Cell Biology and Cancer Chemotherapy |
title_auth | Mathematical Models in Cell Biology and Cancer Chemotherapy |
title_exact_search | Mathematical Models in Cell Biology and Cancer Chemotherapy |
title_full | Mathematical Models in Cell Biology and Cancer Chemotherapy by Martin Eisen |
title_fullStr | Mathematical Models in Cell Biology and Cancer Chemotherapy by Martin Eisen |
title_full_unstemmed | Mathematical Models in Cell Biology and Cancer Chemotherapy by Martin Eisen |
title_short | Mathematical Models in Cell Biology and Cancer Chemotherapy |
title_sort | mathematical models in cell biology and cancer chemotherapy |
topic | Mathematics Mathematics, general Mathematik Cytostatikum (DE-588)4068347-3 gnd Cytologie (DE-588)4070177-3 gnd Krebs Medizin (DE-588)4073781-0 gnd Mathematisches Modell (DE-588)4114528-8 gnd Chemotherapie (DE-588)4127083-6 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Cytostatikum Cytologie Krebs Medizin Mathematisches Modell Chemotherapie |
url | https://doi.org/10.1007/978-3-642-93126-0 |
work_keys_str_mv | AT eisenmartin mathematicalmodelsincellbiologyandcancerchemotherapy |