Integrodifferential Equations and Delay Models in Population Dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1977
|
Schriftenreihe: | Lecture Notes in Biomathematics
20 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to thank the students who took the course and consequently gave me the opportunity and stimulus to organize these notes. Special thanks go to Professor Paul Fife and Dr. George Swan who also sat in the course and were quite helpful with their comments and observations. Also deserving thanks are Professor Robert O'Malley and Ms. Louise C. Fields of the Applied Mathematics Program here at the University of Arizona. Ms. Fields did an outstandingly efficient and accu rate typing of the manuscript |
Beschreibung: | 1 Online-Ressource (VI, 198 p) |
ISBN: | 9783642930737 9783540084495 |
ISSN: | 0341-633X |
DOI: | 10.1007/978-3-642-93073-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423111 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1977 |||| o||u| ||||||eng d | ||
020 | |a 9783642930737 |c Online |9 978-3-642-93073-7 | ||
020 | |a 9783540084495 |c Print |9 978-3-540-08449-5 | ||
024 | 7 | |a 10.1007/978-3-642-93073-7 |2 doi | |
035 | |a (OCoLC)1185085624 | ||
035 | |a (DE-599)BVBBV042423111 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 577 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cushing, Jim M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Integrodifferential Equations and Delay Models in Population Dynamics |c by Jim M. Cushing |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1977 | |
300 | |a 1 Online-Ressource (VI, 198 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Biomathematics |v 20 |x 0341-633X | |
500 | |a These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to thank the students who took the course and consequently gave me the opportunity and stimulus to organize these notes. Special thanks go to Professor Paul Fife and Dr. George Swan who also sat in the course and were quite helpful with their comments and observations. Also deserving thanks are Professor Robert O'Malley and Ms. Louise C. Fields of the Applied Mathematics Program here at the University of Arizona. Ms. Fields did an outstandingly efficient and accu rate typing of the manuscript | ||
650 | 4 | |a Life sciences | |
650 | 4 | |a Ecology | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Life Sciences | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Biowissenschaften | |
650 | 4 | |a Ökologie | |
650 | 0 | 7 | |a Modell |0 (DE-588)4039798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalgleichung |0 (DE-588)4018923-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Populationsdynamik |0 (DE-588)4046803-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrodifferentialgleichung |0 (DE-588)4161939-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bevölkerungsentwicklung |0 (DE-588)4006292-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Integrodifferentialgleichung |0 (DE-588)4161939-0 |D s |
689 | 0 | 1 | |a Bevölkerungsentwicklung |0 (DE-588)4006292-2 |D s |
689 | 0 | 2 | |a Funktionalgleichung |0 (DE-588)4018923-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Populationsdynamik |0 (DE-588)4046803-3 |D s |
689 | 1 | 1 | |a Modell |0 (DE-588)4039798-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-93073-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858528 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098451550208 |
---|---|
any_adam_object | |
author | Cushing, Jim M. |
author_facet | Cushing, Jim M. |
author_role | aut |
author_sort | Cushing, Jim M. |
author_variant | j m c jm jmc |
building | Verbundindex |
bvnumber | BV042423111 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185085624 (DE-599)BVBBV042423111 |
dewey-full | 577 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577 |
dewey-search | 577 |
dewey-sort | 3577 |
dewey-tens | 570 - Biology |
discipline | Biologie Mathematik |
doi_str_mv | 10.1007/978-3-642-93073-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03896nmm a2200637zcb4500</leader><controlfield tag="001">BV042423111</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1977 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642930737</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-93073-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540084495</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-08449-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-93073-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185085624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423111</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cushing, Jim M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrodifferential Equations and Delay Models in Population Dynamics</subfield><subfield code="c">by Jim M. Cushing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 198 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Biomathematics</subfield><subfield code="v">20</subfield><subfield code="x">0341-633X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to thank the students who took the course and consequently gave me the opportunity and stimulus to organize these notes. Special thanks go to Professor Paul Fife and Dr. George Swan who also sat in the course and were quite helpful with their comments and observations. Also deserving thanks are Professor Robert O'Malley and Ms. Louise C. Fields of the Applied Mathematics Program here at the University of Arizona. Ms. Fields did an outstandingly efficient and accu rate typing of the manuscript</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biowissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ökologie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Populationsdynamik</subfield><subfield code="0">(DE-588)4046803-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrodifferentialgleichung</subfield><subfield code="0">(DE-588)4161939-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bevölkerungsentwicklung</subfield><subfield code="0">(DE-588)4006292-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integrodifferentialgleichung</subfield><subfield code="0">(DE-588)4161939-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bevölkerungsentwicklung</subfield><subfield code="0">(DE-588)4006292-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Populationsdynamik</subfield><subfield code="0">(DE-588)4046803-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-93073-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858528</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423111 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642930737 9783540084495 |
issn | 0341-633X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858528 |
oclc_num | 1185085624 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 198 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Biomathematics |
spelling | Cushing, Jim M. Verfasser aut Integrodifferential Equations and Delay Models in Population Dynamics by Jim M. Cushing Berlin, Heidelberg Springer Berlin Heidelberg 1977 1 Online-Ressource (VI, 198 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Biomathematics 20 0341-633X These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to thank the students who took the course and consequently gave me the opportunity and stimulus to organize these notes. Special thanks go to Professor Paul Fife and Dr. George Swan who also sat in the course and were quite helpful with their comments and observations. Also deserving thanks are Professor Robert O'Malley and Ms. Louise C. Fields of the Applied Mathematics Program here at the University of Arizona. Ms. Fields did an outstandingly efficient and accu rate typing of the manuscript Life sciences Ecology Functional equations Functional analysis Life Sciences Functional Analysis Difference and Functional Equations Biowissenschaften Ökologie Modell (DE-588)4039798-1 gnd rswk-swf Funktionalgleichung (DE-588)4018923-5 gnd rswk-swf Populationsdynamik (DE-588)4046803-3 gnd rswk-swf Integrodifferentialgleichung (DE-588)4161939-0 gnd rswk-swf Bevölkerungsentwicklung (DE-588)4006292-2 gnd rswk-swf Integrodifferentialgleichung (DE-588)4161939-0 s Bevölkerungsentwicklung (DE-588)4006292-2 s Funktionalgleichung (DE-588)4018923-5 s 1\p DE-604 Populationsdynamik (DE-588)4046803-3 s Modell (DE-588)4039798-1 s 2\p DE-604 https://doi.org/10.1007/978-3-642-93073-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cushing, Jim M. Integrodifferential Equations and Delay Models in Population Dynamics Life sciences Ecology Functional equations Functional analysis Life Sciences Functional Analysis Difference and Functional Equations Biowissenschaften Ökologie Modell (DE-588)4039798-1 gnd Funktionalgleichung (DE-588)4018923-5 gnd Populationsdynamik (DE-588)4046803-3 gnd Integrodifferentialgleichung (DE-588)4161939-0 gnd Bevölkerungsentwicklung (DE-588)4006292-2 gnd |
subject_GND | (DE-588)4039798-1 (DE-588)4018923-5 (DE-588)4046803-3 (DE-588)4161939-0 (DE-588)4006292-2 |
title | Integrodifferential Equations and Delay Models in Population Dynamics |
title_auth | Integrodifferential Equations and Delay Models in Population Dynamics |
title_exact_search | Integrodifferential Equations and Delay Models in Population Dynamics |
title_full | Integrodifferential Equations and Delay Models in Population Dynamics by Jim M. Cushing |
title_fullStr | Integrodifferential Equations and Delay Models in Population Dynamics by Jim M. Cushing |
title_full_unstemmed | Integrodifferential Equations and Delay Models in Population Dynamics by Jim M. Cushing |
title_short | Integrodifferential Equations and Delay Models in Population Dynamics |
title_sort | integrodifferential equations and delay models in population dynamics |
topic | Life sciences Ecology Functional equations Functional analysis Life Sciences Functional Analysis Difference and Functional Equations Biowissenschaften Ökologie Modell (DE-588)4039798-1 gnd Funktionalgleichung (DE-588)4018923-5 gnd Populationsdynamik (DE-588)4046803-3 gnd Integrodifferentialgleichung (DE-588)4161939-0 gnd Bevölkerungsentwicklung (DE-588)4006292-2 gnd |
topic_facet | Life sciences Ecology Functional equations Functional analysis Life Sciences Functional Analysis Difference and Functional Equations Biowissenschaften Ökologie Modell Funktionalgleichung Populationsdynamik Integrodifferentialgleichung Bevölkerungsentwicklung |
url | https://doi.org/10.1007/978-3-642-93073-7 |
work_keys_str_mv | AT cushingjimm integrodifferentialequationsanddelaymodelsinpopulationdynamics |