Univalent Functions and Conformal Mapping:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1958
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
18 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph deals with the application of the method of the extremal metric to the theory of univalent functions. Apart from an introductory chapter in which a brief survey of the development of this theory is given there is therefore no attempt to follow up other methods of treatment. Nevertheless such is the power of the present method that it is possible to include the great majority of known results on univalent functions. It should be mentioned also that the discussion of the method of the extremal metric is directed toward its application to univalent functions, there being no space to present its numerous other applications, particularly to questions of quasiconformal mapping. Also it should be said that there has been no attempt to provide an exhaustive biblio graphy, reference normally being confined to those sources actually quoted in the text. The central theme of our work is the General Coefficient Theorem which contains as special cases a great many of the known results on univalent functions. In a final chapter we give also a number of appli cations of the method of symmetrization. At the time of writing of this monograph the author has been re ceiving support from the National Science Foundation for which he wishes to express his gratitude. His thanks are due also to Sister BARBARA ANN Foos for the use of notes taken at the author's lectures in Geo metric Function Theory at the University of Notre Dame in 1955-1956 |
Beschreibung: | 1 Online-Ressource (VIII, 170 p) |
ISBN: | 9783642885631 9783642885655 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-88563-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423100 | ||
003 | DE-604 | ||
005 | 20200710 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1958 |||| o||u| ||||||eng d | ||
020 | |a 9783642885631 |c Online |9 978-3-642-88563-1 | ||
020 | |a 9783642885655 |c Print |9 978-3-642-88565-5 | ||
024 | 7 | |a 10.1007/978-3-642-88563-1 |2 doi | |
035 | |a (OCoLC)1165580287 | ||
035 | |a (DE-599)BVBBV042423100 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Jenkins, James Allister |d 1923-2012 |e Verfasser |0 (DE-588)1200371283 |4 aut | |
245 | 1 | 0 | |a Univalent Functions and Conformal Mapping |c by James A. Jenkins |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1958 | |
300 | |a 1 Online-Ressource (VIII, 170 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 18 |x 0071-1136 | |
500 | |a This monograph deals with the application of the method of the extremal metric to the theory of univalent functions. Apart from an introductory chapter in which a brief survey of the development of this theory is given there is therefore no attempt to follow up other methods of treatment. Nevertheless such is the power of the present method that it is possible to include the great majority of known results on univalent functions. It should be mentioned also that the discussion of the method of the extremal metric is directed toward its application to univalent functions, there being no space to present its numerous other applications, particularly to questions of quasiconformal mapping. Also it should be said that there has been no attempt to provide an exhaustive biblio graphy, reference normally being confined to those sources actually quoted in the text. The central theme of our work is the General Coefficient Theorem which contains as special cases a great many of the known results on univalent functions. In a final chapter we give also a number of appli cations of the method of symmetrization. At the time of writing of this monograph the author has been re ceiving support from the National Science Foundation for which he wishes to express his gratitude. His thanks are due also to Sister BARBARA ANN Foos for the use of notes taken at the author's lectures in Geo metric Function Theory at the University of Notre Dame in 1955-1956 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schlichte Funktion |0 (DE-588)4131418-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konforme Abbildung |0 (DE-588)4164968-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | 1 | |a Schlichte Funktion |0 (DE-588)4131418-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Konforme Abbildung |0 (DE-588)4164968-0 |D s |
689 | 1 | 1 | |a Schlichte Funktion |0 (DE-588)4131418-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-88563-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858517 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098449453056 |
---|---|
any_adam_object | |
author | Jenkins, James Allister 1923-2012 |
author_GND | (DE-588)1200371283 |
author_facet | Jenkins, James Allister 1923-2012 |
author_role | aut |
author_sort | Jenkins, James Allister 1923-2012 |
author_variant | j a j ja jaj |
building | Verbundindex |
bvnumber | BV042423100 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165580287 (DE-599)BVBBV042423100 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-88563-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03454nmm a2200529zcb4500</leader><controlfield tag="001">BV042423100</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200710 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1958 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642885631</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-88563-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642885655</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-88565-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-88563-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165580287</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jenkins, James Allister</subfield><subfield code="d">1923-2012</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1200371283</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Univalent Functions and Conformal Mapping</subfield><subfield code="c">by James A. Jenkins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1958</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 170 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">18</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph deals with the application of the method of the extremal metric to the theory of univalent functions. Apart from an introductory chapter in which a brief survey of the development of this theory is given there is therefore no attempt to follow up other methods of treatment. Nevertheless such is the power of the present method that it is possible to include the great majority of known results on univalent functions. It should be mentioned also that the discussion of the method of the extremal metric is directed toward its application to univalent functions, there being no space to present its numerous other applications, particularly to questions of quasiconformal mapping. Also it should be said that there has been no attempt to provide an exhaustive biblio graphy, reference normally being confined to those sources actually quoted in the text. The central theme of our work is the General Coefficient Theorem which contains as special cases a great many of the known results on univalent functions. In a final chapter we give also a number of appli cations of the method of symmetrization. At the time of writing of this monograph the author has been re ceiving support from the National Science Foundation for which he wishes to express his gratitude. His thanks are due also to Sister BARBARA ANN Foos for the use of notes taken at the author's lectures in Geo metric Function Theory at the University of Notre Dame in 1955-1956</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schlichte Funktion</subfield><subfield code="0">(DE-588)4131418-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schlichte Funktion</subfield><subfield code="0">(DE-588)4131418-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Konforme Abbildung</subfield><subfield code="0">(DE-588)4164968-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Schlichte Funktion</subfield><subfield code="0">(DE-588)4131418-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-88563-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858517</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423100 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642885631 9783642885655 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858517 |
oclc_num | 1165580287 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 170 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1958 |
publishDateSearch | 1958 |
publishDateSort | 1958 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spelling | Jenkins, James Allister 1923-2012 Verfasser (DE-588)1200371283 aut Univalent Functions and Conformal Mapping by James A. Jenkins Berlin, Heidelberg Springer Berlin Heidelberg 1958 1 Online-Ressource (VIII, 170 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete 18 0071-1136 This monograph deals with the application of the method of the extremal metric to the theory of univalent functions. Apart from an introductory chapter in which a brief survey of the development of this theory is given there is therefore no attempt to follow up other methods of treatment. Nevertheless such is the power of the present method that it is possible to include the great majority of known results on univalent functions. It should be mentioned also that the discussion of the method of the extremal metric is directed toward its application to univalent functions, there being no space to present its numerous other applications, particularly to questions of quasiconformal mapping. Also it should be said that there has been no attempt to provide an exhaustive biblio graphy, reference normally being confined to those sources actually quoted in the text. The central theme of our work is the General Coefficient Theorem which contains as special cases a great many of the known results on univalent functions. In a final chapter we give also a number of appli cations of the method of symmetrization. At the time of writing of this monograph the author has been re ceiving support from the National Science Foundation for which he wishes to express his gratitude. His thanks are due also to Sister BARBARA ANN Foos for the use of notes taken at the author's lectures in Geo metric Function Theory at the University of Notre Dame in 1955-1956 Mathematics Mathematics, general Mathematik Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Schlichte Funktion (DE-588)4131418-9 gnd rswk-swf Konforme Abbildung (DE-588)4164968-0 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 s Schlichte Funktion (DE-588)4131418-9 s 1\p DE-604 Konforme Abbildung (DE-588)4164968-0 s 2\p DE-604 https://doi.org/10.1007/978-3-642-88563-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jenkins, James Allister 1923-2012 Univalent Functions and Conformal Mapping Mathematics Mathematics, general Mathematik Funktionentheorie (DE-588)4018935-1 gnd Schlichte Funktion (DE-588)4131418-9 gnd Konforme Abbildung (DE-588)4164968-0 gnd |
subject_GND | (DE-588)4018935-1 (DE-588)4131418-9 (DE-588)4164968-0 |
title | Univalent Functions and Conformal Mapping |
title_auth | Univalent Functions and Conformal Mapping |
title_exact_search | Univalent Functions and Conformal Mapping |
title_full | Univalent Functions and Conformal Mapping by James A. Jenkins |
title_fullStr | Univalent Functions and Conformal Mapping by James A. Jenkins |
title_full_unstemmed | Univalent Functions and Conformal Mapping by James A. Jenkins |
title_short | Univalent Functions and Conformal Mapping |
title_sort | univalent functions and conformal mapping |
topic | Mathematics Mathematics, general Mathematik Funktionentheorie (DE-588)4018935-1 gnd Schlichte Funktion (DE-588)4131418-9 gnd Konforme Abbildung (DE-588)4164968-0 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Funktionentheorie Schlichte Funktion Konforme Abbildung |
url | https://doi.org/10.1007/978-3-642-88563-1 |
work_keys_str_mv | AT jenkinsjamesallister univalentfunctionsandconformalmapping |