The Physics of Large Deformation of Crystalline Solids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1968
|
Schriftenreihe: | Springer Tracts in Natural Philosophy
14 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led to the discovery that the uniaxial stress-strain functions of 27 crystalline solids are unified in a single, generalized stress-strain function which is described, much of it hitherto unpublished, in the present monograph. The detailed study of over 2,000 polycrystal and single crystal uni axial stress experiments in 27 crystalline solids, in terms of the variation of a large number of pertinent parameters, has provided new unified pat terns of understanding which, it is hoped, will be of interest and value to theorists and experimentalists alike |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783642884405 9783642884429 |
ISSN: | 0081-3877 |
DOI: | 10.1007/978-3-642-88440-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423097 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1968 |||| o||u| ||||||eng d | ||
020 | |a 9783642884405 |c Online |9 978-3-642-88440-5 | ||
020 | |a 9783642884429 |c Print |9 978-3-642-88442-9 | ||
024 | 7 | |a 10.1007/978-3-642-88440-5 |2 doi | |
035 | |a (OCoLC)864003158 | ||
035 | |a (DE-599)BVBBV042423097 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bell, James F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Physics of Large Deformation of Crystalline Solids |c by James F. Bell |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1968 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Tracts in Natural Philosophy |v 14 |x 0081-3877 | |
500 | |a Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led to the discovery that the uniaxial stress-strain functions of 27 crystalline solids are unified in a single, generalized stress-strain function which is described, much of it hitherto unpublished, in the present monograph. The detailed study of over 2,000 polycrystal and single crystal uni axial stress experiments in 27 crystalline solids, in terms of the variation of a large number of pertinent parameters, has provided new unified pat terns of understanding which, it is hoped, will be of interest and value to theorists and experimentalists alike | ||
650 | 4 | |a Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 0 | 7 | |a Kristall |0 (DE-588)4033209-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deformation |0 (DE-588)4070262-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Versetzung |g Kristallographie |0 (DE-588)4187993-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Versetzung |g Kristallographie |0 (DE-588)4187993-4 |D s |
689 | 0 | 1 | |a Kontinuumsphysik |0 (DE-588)4165166-2 |D s |
689 | 0 | 2 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 1 | 1 | |a Deformation |0 (DE-588)4070262-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Kristall |0 (DE-588)4033209-3 |D s |
689 | 2 | 1 | |a Deformation |0 (DE-588)4070262-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-88440-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858514 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098440015872 |
---|---|
any_adam_object | |
author | Bell, James F. |
author_facet | Bell, James F. |
author_role | aut |
author_sort | Bell, James F. |
author_variant | j f b jf jfb |
building | Verbundindex |
bvnumber | BV042423097 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864003158 (DE-599)BVBBV042423097 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-3-642-88440-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03954nmm a2200613zcb4500</leader><controlfield tag="001">BV042423097</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1968 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642884405</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-88440-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642884429</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-88442-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-88440-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864003158</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423097</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bell, James F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Physics of Large Deformation of Crystalline Solids</subfield><subfield code="c">by James F. Bell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Tracts in Natural Philosophy</subfield><subfield code="v">14</subfield><subfield code="x">0081-3877</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led to the discovery that the uniaxial stress-strain functions of 27 crystalline solids are unified in a single, generalized stress-strain function which is described, much of it hitherto unpublished, in the present monograph. The detailed study of over 2,000 polycrystal and single crystal uni axial stress experiments in 27 crystalline solids, in terms of the variation of a large number of pertinent parameters, has provided new unified pat terns of understanding which, it is hoped, will be of interest and value to theorists and experimentalists alike</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristall</subfield><subfield code="0">(DE-588)4033209-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deformation</subfield><subfield code="0">(DE-588)4070262-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Versetzung</subfield><subfield code="g">Kristallographie</subfield><subfield code="0">(DE-588)4187993-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Versetzung</subfield><subfield code="g">Kristallographie</subfield><subfield code="0">(DE-588)4187993-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kontinuumsphysik</subfield><subfield code="0">(DE-588)4165166-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Deformation</subfield><subfield code="0">(DE-588)4070262-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kristall</subfield><subfield code="0">(DE-588)4033209-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Deformation</subfield><subfield code="0">(DE-588)4070262-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-88440-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858514</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423097 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642884405 9783642884429 |
issn | 0081-3877 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858514 |
oclc_num | 864003158 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Tracts in Natural Philosophy |
spelling | Bell, James F. Verfasser aut The Physics of Large Deformation of Crystalline Solids by James F. Bell Berlin, Heidelberg Springer Berlin Heidelberg 1968 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Springer Tracts in Natural Philosophy 14 0081-3877 Historically, a major problem for the study of the large deformation of crystalline solids has been the apparent lack of unity in experimentally determined stress-strain functions. The writer's discovery in 1949 of the unexpectedly high velocity of incremental loading waves in pre-stressed large deformation fields emphasized to him the pressing need for the independent, systematic experimental study of the subject, to provide a firm foundation upon which physically plausible theories for the finite deformation of crystalline solids could be constructed. Such a study undertaken by the writer at that time and continued uninterruptedly to the present, led in 1956 to the development of the diffraction grating experiment which permitted, for the first time, the optically accurate determination of the strain-time detail of non-linear finite amplitude wave fronts propagating into crystalline solids whose prior history was precisely known. These experimental diffraction grating studies during the past decade have led to the discovery that the uniaxial stress-strain functions of 27 crystalline solids are unified in a single, generalized stress-strain function which is described, much of it hitherto unpublished, in the present monograph. The detailed study of over 2,000 polycrystal and single crystal uni axial stress experiments in 27 crystalline solids, in terms of the variation of a large number of pertinent parameters, has provided new unified pat terns of understanding which, it is hoped, will be of interest and value to theorists and experimentalists alike Physics Theoretical, Mathematical and Computational Physics Kristall (DE-588)4033209-3 gnd rswk-swf Deformation (DE-588)4070262-5 gnd rswk-swf Theorie (DE-588)4059787-8 gnd rswk-swf Kontinuumsphysik (DE-588)4165166-2 gnd rswk-swf Versetzung Kristallographie (DE-588)4187993-4 gnd rswk-swf Festkörper (DE-588)4016918-2 gnd rswk-swf Versetzung Kristallographie (DE-588)4187993-4 s Kontinuumsphysik (DE-588)4165166-2 s Theorie (DE-588)4059787-8 s 1\p DE-604 Festkörper (DE-588)4016918-2 s Deformation (DE-588)4070262-5 s 2\p DE-604 Kristall (DE-588)4033209-3 s 3\p DE-604 https://doi.org/10.1007/978-3-642-88440-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bell, James F. The Physics of Large Deformation of Crystalline Solids Physics Theoretical, Mathematical and Computational Physics Kristall (DE-588)4033209-3 gnd Deformation (DE-588)4070262-5 gnd Theorie (DE-588)4059787-8 gnd Kontinuumsphysik (DE-588)4165166-2 gnd Versetzung Kristallographie (DE-588)4187993-4 gnd Festkörper (DE-588)4016918-2 gnd |
subject_GND | (DE-588)4033209-3 (DE-588)4070262-5 (DE-588)4059787-8 (DE-588)4165166-2 (DE-588)4187993-4 (DE-588)4016918-2 |
title | The Physics of Large Deformation of Crystalline Solids |
title_auth | The Physics of Large Deformation of Crystalline Solids |
title_exact_search | The Physics of Large Deformation of Crystalline Solids |
title_full | The Physics of Large Deformation of Crystalline Solids by James F. Bell |
title_fullStr | The Physics of Large Deformation of Crystalline Solids by James F. Bell |
title_full_unstemmed | The Physics of Large Deformation of Crystalline Solids by James F. Bell |
title_short | The Physics of Large Deformation of Crystalline Solids |
title_sort | the physics of large deformation of crystalline solids |
topic | Physics Theoretical, Mathematical and Computational Physics Kristall (DE-588)4033209-3 gnd Deformation (DE-588)4070262-5 gnd Theorie (DE-588)4059787-8 gnd Kontinuumsphysik (DE-588)4165166-2 gnd Versetzung Kristallographie (DE-588)4187993-4 gnd Festkörper (DE-588)4016918-2 gnd |
topic_facet | Physics Theoretical, Mathematical and Computational Physics Kristall Deformation Theorie Kontinuumsphysik Versetzung Kristallographie Festkörper |
url | https://doi.org/10.1007/978-3-642-88440-5 |
work_keys_str_mv | AT belljamesf thephysicsoflargedeformationofcrystallinesolids |