Symmetric Bilinear Forms:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Milnor, John (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1973
Schriftenreihe:Ergebnisse der Mathematik und ihrer Grenzgebiete 73
Schlagworte:
Online-Zugang:Volltext
Beschreibung:The theory of quadratic forms and the intimately related theory of symmetric bilinear forms have a lang and rich his tory, highlighted by the work of Legendre, Gauss, Minkowski, and Hasse. (Compare [Dickson] and [Bourbaki, 24, p. 185].) Our exposition will concentrate on the relatively recent developments which begin with and are inspired by Witt's 1937 paper "Theorie der quadratischen Formen in beliebigen Körpern." We will be particularly interested in the work of A. Pfister and M. Knebusch. However, some older material will be described, particularly in Chapter II. The presentation is based on lectures by Milnor at the Institute for Advanced Study, and at Haverford College under the Phillips Lecture Program, during the Fall of 1970, as well as lectures at Princeton University in 1966. We want to thank J. Cunningham, M. Knebusch, M. Kneser, A. Rosenberg, W. Scharlau and J.-P. Serre for helpful suggestions and corrections. Prerequisites. The reader should be familiar with the rudiments of algebra, including for example the concept of tensor product for modules over a commutative ring. A few individual sections will require quite a bit more. The logical relationship between the various chapters can be roughly described by the diagram below. There are also five appendices, largely self-contained, which treat special topics. I. Arbitrary commutative rings I H. The ring of V. Miscellaneous IIl. Fields integers examples IV. Dedekind domains Contents Chapter r. Basie Coneepts . . . . . . .
Beschreibung:1 Online-Ressource (VIII, 150 p)
ISBN:9783642883309
9783642883323
DOI:10.1007/978-3-642-88330-9

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen