Partial Differential Equations of Elliptic Type:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1970
|
Ausgabe: | Second Revised Edition |
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
2 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations |
Beschreibung: | 1 Online-Ressource (XII, 370p) |
ISBN: | 9783642877735 9783642877759 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-87773-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423081 | ||
003 | DE-604 | ||
005 | 20160720 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1970 |||| o||u| ||||||eng d | ||
020 | |a 9783642877735 |c Online |9 978-3-642-87773-5 | ||
020 | |a 9783642877759 |c Print |9 978-3-642-87775-9 | ||
024 | 7 | |a 10.1007/978-3-642-87773-5 |2 doi | |
035 | |a (OCoLC)862495553 | ||
035 | |a (DE-599)BVBBV042423081 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Miranda, Carlo |d 1912-1982 |e Verfasser |0 (DE-588)1074379950 |4 aut | |
245 | 1 | 0 | |a Partial Differential Equations of Elliptic Type |c by Carlo Miranda |
250 | |a Second Revised Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1970 | |
300 | |a 1 Online-Ressource (XII, 370p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 2 |x 0071-1136 | |
500 | |a In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-87773-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858498 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098409607168 |
---|---|
any_adam_object | |
author | Miranda, Carlo 1912-1982 |
author_GND | (DE-588)1074379950 |
author_facet | Miranda, Carlo 1912-1982 |
author_role | aut |
author_sort | Miranda, Carlo 1912-1982 |
author_variant | c m cm |
building | Verbundindex |
bvnumber | BV042423081 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)862495553 (DE-599)BVBBV042423081 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-87773-5 |
edition | Second Revised Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02921nmm a2200505zcb4500</leader><controlfield tag="001">BV042423081</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160720 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1970 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642877735</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-87773-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642877759</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-87775-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-87773-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)862495553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423081</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miranda, Carlo</subfield><subfield code="d">1912-1982</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1074379950</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial Differential Equations of Elliptic Type</subfield><subfield code="c">by Carlo Miranda</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Revised Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 370p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">2</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-87773-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858498</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423081 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642877735 9783642877759 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858498 |
oclc_num | 862495553 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 370p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1970 |
publishDateSearch | 1970 |
publishDateSort | 1970 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spelling | Miranda, Carlo 1912-1982 Verfasser (DE-588)1074379950 aut Partial Differential Equations of Elliptic Type by Carlo Miranda Second Revised Edition Berlin, Heidelberg Springer Berlin Heidelberg 1970 1 Online-Ressource (XII, 370p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete 2 0071-1136 In the theory of partial differential equations, the study of elliptic equations occupies a preeminent position, both because of the importance which it assumes for various questions in mathematical physics, and because of the completeness of the results obtained up to the present time. In spite of this, even in the more classical treatises on analysis the theory of elliptic equations has been considered and illustrated only from particular points of view, while the only expositions of the whole theory, the extremely valuable ones by LICHTENSTEIN and AscoLI, have the charac ter of encyclopedia articles and date back to many years ago. Consequently it seemed to me that it would be of some interest to try to give an up-to-date picture of the present state of research in this area in a monograph which, without attaining the dimensions of a treatise, would nevertheless be sufficiently extensive to allow the expo sition, in some cases in summary form, of the various techniques used in the study of these equations Mathematics Mathematics, general Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 s 1\p DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s 2\p DE-604 https://doi.org/10.1007/978-3-642-87773-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Miranda, Carlo 1912-1982 Partial Differential Equations of Elliptic Type Mathematics Mathematics, general Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4014485-9 |
title | Partial Differential Equations of Elliptic Type |
title_auth | Partial Differential Equations of Elliptic Type |
title_exact_search | Partial Differential Equations of Elliptic Type |
title_full | Partial Differential Equations of Elliptic Type by Carlo Miranda |
title_fullStr | Partial Differential Equations of Elliptic Type by Carlo Miranda |
title_full_unstemmed | Partial Differential Equations of Elliptic Type by Carlo Miranda |
title_short | Partial Differential Equations of Elliptic Type |
title_sort | partial differential equations of elliptic type |
topic | Mathematics Mathematics, general Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Partielle Differentialgleichung Elliptische Differentialgleichung |
url | https://doi.org/10.1007/978-3-642-87773-5 |
work_keys_str_mv | AT mirandacarlo partialdifferentialequationsofelliptictype |