Integrability Theorems for Trigonometric Transforms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1967
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
38 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph is areport on the present state of a fairly coherent collection of problems about which a sizeable literature has grown up in recent years. In this literature, some of the problems have, as it happens, been analyzed in great detail, whereas other very similar ones have been treated much more superficially. I have not attempted to improve on the literature by making equally detailed presentations of every topic. I have also not aimed at encyclopedic completeness. I have, however, pointed out some possible generalizations by stating a number of questions; some of these could doubtless be disposed of in a few minutes; some are probably quite difficult. This monograph was written at the suggestion of B. SZ.-NAGY. I take this opportunity of pointing out that his paper [1] inspired the greater part of the material that is presented here; in particular, it contains the happy idea of focusing Y attention on the multipliers nY-i, x- . R. ASKEY, P. HEYWOOD, M. and S. IZUMI, and S. WAINGER have kindly communicated some of their recent results to me before publication. I am indebted for help on various points to L. S. BOSANQUET, S. M. EDMONDS, G. GOES, S. IZUMI, A. ZYGMUND, and especially to R. ASKEY. My work was supported by the National Science Foundation under grants GP-314, GP-2491, GP-3940 and GP-5558. Evanston, Illinois, February, 1967 R. P. Boas, Jr. Contents Notations ... § 1. Introduetion 3 §2. Lemmas .. 7 § 3. Theorems with positive or decreasing functions |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783642871085 9783642871108 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-87108-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423071 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1967 |||| o||u| ||||||eng d | ||
020 | |a 9783642871085 |c Online |9 978-3-642-87108-5 | ||
020 | |a 9783642871108 |c Print |9 978-3-642-87110-8 | ||
024 | 7 | |a 10.1007/978-3-642-87108-5 |2 doi | |
035 | |a (OCoLC)863994763 | ||
035 | |a (DE-599)BVBBV042423071 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Boas, Ralph P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Integrability Theorems for Trigonometric Transforms |c by Ralph P. Boas |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1967 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 38 |x 0071-1136 | |
500 | |a This monograph is areport on the present state of a fairly coherent collection of problems about which a sizeable literature has grown up in recent years. In this literature, some of the problems have, as it happens, been analyzed in great detail, whereas other very similar ones have been treated much more superficially. I have not attempted to improve on the literature by making equally detailed presentations of every topic. I have also not aimed at encyclopedic completeness. I have, however, pointed out some possible generalizations by stating a number of questions; some of these could doubtless be disposed of in a few minutes; some are probably quite difficult. This monograph was written at the suggestion of B. SZ.-NAGY. I take this opportunity of pointing out that his paper [1] inspired the greater part of the material that is presented here; in particular, it contains the happy idea of focusing Y attention on the multipliers nY-i, x- . R. ASKEY, P. HEYWOOD, M. and S. IZUMI, and S. WAINGER have kindly communicated some of their recent results to me before publication. I am indebted for help on various points to L. S. BOSANQUET, S. M. EDMONDS, G. GOES, S. IZUMI, A. ZYGMUND, and especially to R. ASKEY. My work was supported by the National Science Foundation under grants GP-314, GP-2491, GP-3940 and GP-5558. Evanston, Illinois, February, 1967 R. P. Boas, Jr. Contents Notations ... § 1. Introduetion 3 §2. Lemmas .. 7 § 3. Theorems with positive or decreasing functions | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Trigonometrische Funktion |0 (DE-588)4186137-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrierbarkeit |0 (DE-588)4474751-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Integral |0 (DE-588)4121290-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Trigonometrische Funktion |0 (DE-588)4186137-1 |D s |
689 | 0 | 1 | |a Integrierbarkeit |0 (DE-588)4474751-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 1 | 1 | |a Integrierbarkeit |0 (DE-588)4474751-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Fourier-Integral |0 (DE-588)4121290-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-87108-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858488 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098395975680 |
---|---|
any_adam_object | |
author | Boas, Ralph P. |
author_facet | Boas, Ralph P. |
author_role | aut |
author_sort | Boas, Ralph P. |
author_variant | r p b rp rpb |
building | Verbundindex |
bvnumber | BV042423071 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863994763 (DE-599)BVBBV042423071 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-87108-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04174nmm a2200673zcb4500</leader><controlfield tag="001">BV042423071</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1967 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642871085</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-87108-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642871108</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-87110-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-87108-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863994763</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423071</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boas, Ralph P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integrability Theorems for Trigonometric Transforms</subfield><subfield code="c">by Ralph P. Boas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1967</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">38</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph is areport on the present state of a fairly coherent collection of problems about which a sizeable literature has grown up in recent years. In this literature, some of the problems have, as it happens, been analyzed in great detail, whereas other very similar ones have been treated much more superficially. I have not attempted to improve on the literature by making equally detailed presentations of every topic. I have also not aimed at encyclopedic completeness. I have, however, pointed out some possible generalizations by stating a number of questions; some of these could doubtless be disposed of in a few minutes; some are probably quite difficult. This monograph was written at the suggestion of B. SZ.-NAGY. I take this opportunity of pointing out that his paper [1] inspired the greater part of the material that is presented here; in particular, it contains the happy idea of focusing Y attention on the multipliers nY-i, x- . R. ASKEY, P. HEYWOOD, M. and S. IZUMI, and S. WAINGER have kindly communicated some of their recent results to me before publication. I am indebted for help on various points to L. S. BOSANQUET, S. M. EDMONDS, G. GOES, S. IZUMI, A. ZYGMUND, and especially to R. ASKEY. My work was supported by the National Science Foundation under grants GP-314, GP-2491, GP-3940 and GP-5558. Evanston, Illinois, February, 1967 R. P. Boas, Jr. Contents Notations ... § 1. Introduetion 3 §2. Lemmas .. 7 § 3. Theorems with positive or decreasing functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Trigonometrische Funktion</subfield><subfield code="0">(DE-588)4186137-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrierbarkeit</subfield><subfield code="0">(DE-588)4474751-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Integral</subfield><subfield code="0">(DE-588)4121290-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Trigonometrische Funktion</subfield><subfield code="0">(DE-588)4186137-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrierbarkeit</subfield><subfield code="0">(DE-588)4474751-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Integrierbarkeit</subfield><subfield code="0">(DE-588)4474751-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Fourier-Integral</subfield><subfield code="0">(DE-588)4121290-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-87108-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858488</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423071 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642871085 9783642871108 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858488 |
oclc_num | 863994763 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1967 |
publishDateSearch | 1967 |
publishDateSort | 1967 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spelling | Boas, Ralph P. Verfasser aut Integrability Theorems for Trigonometric Transforms by Ralph P. Boas Berlin, Heidelberg Springer Berlin Heidelberg 1967 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete 38 0071-1136 This monograph is areport on the present state of a fairly coherent collection of problems about which a sizeable literature has grown up in recent years. In this literature, some of the problems have, as it happens, been analyzed in great detail, whereas other very similar ones have been treated much more superficially. I have not attempted to improve on the literature by making equally detailed presentations of every topic. I have also not aimed at encyclopedic completeness. I have, however, pointed out some possible generalizations by stating a number of questions; some of these could doubtless be disposed of in a few minutes; some are probably quite difficult. This monograph was written at the suggestion of B. SZ.-NAGY. I take this opportunity of pointing out that his paper [1] inspired the greater part of the material that is presented here; in particular, it contains the happy idea of focusing Y attention on the multipliers nY-i, x- . R. ASKEY, P. HEYWOOD, M. and S. IZUMI, and S. WAINGER have kindly communicated some of their recent results to me before publication. I am indebted for help on various points to L. S. BOSANQUET, S. M. EDMONDS, G. GOES, S. IZUMI, A. ZYGMUND, and especially to R. ASKEY. My work was supported by the National Science Foundation under grants GP-314, GP-2491, GP-3940 and GP-5558. Evanston, Illinois, February, 1967 R. P. Boas, Jr. Contents Notations ... § 1. Introduetion 3 §2. Lemmas .. 7 § 3. Theorems with positive or decreasing functions Mathematics Mathematics, general Mathematik Trigonometrische Funktion (DE-588)4186137-1 gnd rswk-swf Integrierbarkeit (DE-588)4474751-2 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Integrables System (DE-588)4114032-1 gnd rswk-swf Fourier-Integral (DE-588)4121290-3 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Trigonometrische Funktion (DE-588)4186137-1 s Integrierbarkeit (DE-588)4474751-2 s 1\p DE-604 Harmonische Analyse (DE-588)4023453-8 s 2\p DE-604 Fourier-Integral (DE-588)4121290-3 s 3\p DE-604 Integrables System (DE-588)4114032-1 s 4\p DE-604 Fourier-Transformation (DE-588)4018014-1 s 5\p DE-604 https://doi.org/10.1007/978-3-642-87108-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Boas, Ralph P. Integrability Theorems for Trigonometric Transforms Mathematics Mathematics, general Mathematik Trigonometrische Funktion (DE-588)4186137-1 gnd Integrierbarkeit (DE-588)4474751-2 gnd Harmonische Analyse (DE-588)4023453-8 gnd Integrables System (DE-588)4114032-1 gnd Fourier-Integral (DE-588)4121290-3 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
subject_GND | (DE-588)4186137-1 (DE-588)4474751-2 (DE-588)4023453-8 (DE-588)4114032-1 (DE-588)4121290-3 (DE-588)4018014-1 |
title | Integrability Theorems for Trigonometric Transforms |
title_auth | Integrability Theorems for Trigonometric Transforms |
title_exact_search | Integrability Theorems for Trigonometric Transforms |
title_full | Integrability Theorems for Trigonometric Transforms by Ralph P. Boas |
title_fullStr | Integrability Theorems for Trigonometric Transforms by Ralph P. Boas |
title_full_unstemmed | Integrability Theorems for Trigonometric Transforms by Ralph P. Boas |
title_short | Integrability Theorems for Trigonometric Transforms |
title_sort | integrability theorems for trigonometric transforms |
topic | Mathematics Mathematics, general Mathematik Trigonometrische Funktion (DE-588)4186137-1 gnd Integrierbarkeit (DE-588)4474751-2 gnd Harmonische Analyse (DE-588)4023453-8 gnd Integrables System (DE-588)4114032-1 gnd Fourier-Integral (DE-588)4121290-3 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Trigonometrische Funktion Integrierbarkeit Harmonische Analyse Integrables System Fourier-Integral Fourier-Transformation |
url | https://doi.org/10.1007/978-3-642-87108-5 |
work_keys_str_mv | AT boasralphp integrabilitytheoremsfortrigonometrictransforms |