Asymptotic Behavior and Stability Problems in Ordinary Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1971
|
Ausgabe: | Third Edition |
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
16 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call" qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications |
Beschreibung: | 1 Online-Ressource (X, 274 p) |
ISBN: | 9783642856716 9783642856730 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-85671-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423050 | ||
003 | DE-604 | ||
005 | 20151106 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1971 |||| o||u| ||||||eng d | ||
020 | |a 9783642856716 |c Online |9 978-3-642-85671-6 | ||
020 | |a 9783642856730 |c Print |9 978-3-642-85673-0 | ||
024 | 7 | |a 10.1007/978-3-642-85671-6 |2 doi | |
035 | |a (OCoLC)1186282681 | ||
035 | |a (DE-599)BVBBV042423050 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cesari, Lamberto |d 1910-1990 |e Verfasser |0 (DE-588)118666169 |4 aut | |
245 | 1 | 0 | |a Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |c by Lamberto Cesari |
250 | |a Third Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1971 | |
300 | |a 1 Online-Ressource (X, 274 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 16 |x 0071-1136 | |
500 | |a In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call" qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Methode |0 (DE-588)4287476-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 1 | 1 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 2 | 1 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 3 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-85671-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858467 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098334109696 |
---|---|
any_adam_object | |
author | Cesari, Lamberto 1910-1990 |
author_GND | (DE-588)118666169 |
author_facet | Cesari, Lamberto 1910-1990 |
author_role | aut |
author_sort | Cesari, Lamberto 1910-1990 |
author_variant | l c lc |
building | Verbundindex |
bvnumber | BV042423050 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1186282681 (DE-599)BVBBV042423050 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-85671-6 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04096nmm a2200661zcb4500</leader><controlfield tag="001">BV042423050</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151106 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1971 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642856716</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-85671-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642856730</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-85673-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-85671-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1186282681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cesari, Lamberto</subfield><subfield code="d">1910-1990</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118666169</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Behavior and Stability Problems in Ordinary Differential Equations</subfield><subfield code="c">by Lamberto Cesari</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1971</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 274 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">16</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call" qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-85671-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858467</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423050 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642856716 9783642856730 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858467 |
oclc_num | 1186282681 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 274 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1971 |
publishDateSearch | 1971 |
publishDateSort | 1971 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spelling | Cesari, Lamberto 1910-1990 Verfasser (DE-588)118666169 aut Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari Third Edition Berlin, Heidelberg Springer Berlin Heidelberg 1971 1 Online-Ressource (X, 274 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete 16 0071-1136 In the last few decades the theory of ordinary differential equations has grown rapidly under the action of forces which have been working both from within and without: from within, as a development and deepen ing of the concepts and of the topological and analytical methods brought about by LYAPUNOV, POINCARE, BENDIXSON, and a few others at the turn of the century; from without, in the wake of the technological development, particularly in communications, servomechanisms, auto matic controls, and electronics. The early research of the authors just mentioned lay in challenging problems of astronomy, but the line of thought thus produced found the most impressive applications in the new fields. The body of research now accumulated is overwhelming, and many books and reports have appeared on one or another of the multiple aspects of the new line of research which some authors call" qualitative theory of differential equations". The purpose of the present volume is to present many of the view points and questions in a readable short report for which completeness is not claimed. The bibliographical notes in each section are intended to be a guide to more detailed expositions and to the original papers. Some traditional topics such as the Sturm comparison theory have been omitted. Also excluded were all those papers, dealing with special differential equations motivated by and intended for the applications Mathematics Mathematics, general Mathematik Stabilität (DE-588)4056693-6 gnd rswk-swf Asymptotische Methode (DE-588)4287476-2 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Asymptotik (DE-588)4126634-1 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Stabilität (DE-588)4056693-6 s 1\p DE-604 Asymptotische Methode (DE-588)4287476-2 s 2\p DE-604 Gewöhnliche Differentialgleichung (DE-588)4020929-5 s 3\p DE-604 Asymptotik (DE-588)4126634-1 s 4\p DE-604 https://doi.org/10.1007/978-3-642-85671-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cesari, Lamberto 1910-1990 Asymptotic Behavior and Stability Problems in Ordinary Differential Equations Mathematics Mathematics, general Mathematik Stabilität (DE-588)4056693-6 gnd Asymptotische Methode (DE-588)4287476-2 gnd Differentialgleichung (DE-588)4012249-9 gnd Asymptotik (DE-588)4126634-1 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
subject_GND | (DE-588)4056693-6 (DE-588)4287476-2 (DE-588)4012249-9 (DE-588)4126634-1 (DE-588)4020929-5 |
title | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_auth | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_exact_search | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_full | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari |
title_fullStr | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari |
title_full_unstemmed | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations by Lamberto Cesari |
title_short | Asymptotic Behavior and Stability Problems in Ordinary Differential Equations |
title_sort | asymptotic behavior and stability problems in ordinary differential equations |
topic | Mathematics Mathematics, general Mathematik Stabilität (DE-588)4056693-6 gnd Asymptotische Methode (DE-588)4287476-2 gnd Differentialgleichung (DE-588)4012249-9 gnd Asymptotik (DE-588)4126634-1 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Stabilität Asymptotische Methode Differentialgleichung Asymptotik Gewöhnliche Differentialgleichung |
url | https://doi.org/10.1007/978-3-642-85671-6 |
work_keys_str_mv | AT cesarilamberto asymptoticbehaviorandstabilityproblemsinordinarydifferentialequations |