Homogenization of Differential Operators and Integral Functionals:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathematical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of nonlinear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogenization problems for partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each separate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the constituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc |
Beschreibung: | 1 Online-Ressource (XI, 570 p) |
ISBN: | 9783642846595 9783642846618 |
DOI: | 10.1007/978-3-642-84659-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423044 | ||
003 | DE-604 | ||
005 | 20171113 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783642846595 |c Online |9 978-3-642-84659-5 | ||
020 | |a 9783642846618 |c Print |9 978-3-642-84661-8 | ||
024 | 7 | |a 10.1007/978-3-642-84659-5 |2 doi | |
035 | |a (OCoLC)879622236 | ||
035 | |a (DE-599)BVBBV042423044 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Žikov, Vasilij Vasil'evič |d 1940-2017 |e Verfasser |0 (DE-588)106795063X |4 aut | |
245 | 1 | 0 | |a Homogenization of Differential Operators and Integral Functionals |c by V. V. Jikov, S. M. Kozlov, O. A. Oleinik |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (XI, 570 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathematical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of nonlinear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogenization problems for partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each separate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the constituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homogenisieren |0 (DE-588)4138007-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homogenisierungsmethode |0 (DE-588)4257770-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Homogenisieren |0 (DE-588)4138007-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Homogenisierungsmethode |0 (DE-588)4257770-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Kozlov, S. M. |e Sonstige |4 oth | |
700 | 1 | |a Olejnik, Olʹga A. |d 1925-2001 |e Sonstige |0 (DE-588)114199051 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-84659-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858461 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098317332480 |
---|---|
any_adam_object | |
author | Žikov, Vasilij Vasil'evič 1940-2017 |
author_GND | (DE-588)106795063X (DE-588)114199051 |
author_facet | Žikov, Vasilij Vasil'evič 1940-2017 |
author_role | aut |
author_sort | Žikov, Vasilij Vasil'evič 1940-2017 |
author_variant | v v ž vv vvž |
building | Verbundindex |
bvnumber | BV042423044 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879622236 (DE-599)BVBBV042423044 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-84659-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03989nmm a2200589zc 4500</leader><controlfield tag="001">BV042423044</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642846595</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-84659-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642846618</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-84661-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-84659-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622236</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423044</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Žikov, Vasilij Vasil'evič</subfield><subfield code="d">1940-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106795063X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homogenization of Differential Operators and Integral Functionals</subfield><subfield code="c">by V. V. Jikov, S. M. Kozlov, O. A. Oleinik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 570 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathematical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of nonlinear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogenization problems for partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each separate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the constituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogenisieren</subfield><subfield code="0">(DE-588)4138007-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogenisierungsmethode</subfield><subfield code="0">(DE-588)4257770-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homogenisieren</subfield><subfield code="0">(DE-588)4138007-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Homogenisierungsmethode</subfield><subfield code="0">(DE-588)4257770-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kozlov, S. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olejnik, Olʹga A.</subfield><subfield code="d">1925-2001</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)114199051</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-84659-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858461</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423044 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642846595 9783642846618 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858461 |
oclc_num | 879622236 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 570 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Žikov, Vasilij Vasil'evič 1940-2017 Verfasser (DE-588)106795063X aut Homogenization of Differential Operators and Integral Functionals by V. V. Jikov, S. M. Kozlov, O. A. Oleinik Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (XI, 570 p) txt rdacontent c rdamedia cr rdacarrier It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathematical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of nonlinear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogenization problems for partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each separate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the constituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc Mathematics Global analysis (Mathematics) Distribution (Probability theory) Analysis Theoretical, Mathematical and Computational Physics Probability Theory and Stochastic Processes Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Homogenisieren (DE-588)4138007-1 gnd rswk-swf Homogenisierungsmethode (DE-588)4257770-6 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Homogenisieren (DE-588)4138007-1 s 1\p DE-604 Homogenisierungsmethode (DE-588)4257770-6 s 2\p DE-604 Kozlov, S. M. Sonstige oth Olejnik, Olʹga A. 1925-2001 Sonstige (DE-588)114199051 oth https://doi.org/10.1007/978-3-642-84659-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Žikov, Vasilij Vasil'evič 1940-2017 Homogenization of Differential Operators and Integral Functionals Mathematics Global analysis (Mathematics) Distribution (Probability theory) Analysis Theoretical, Mathematical and Computational Physics Probability Theory and Stochastic Processes Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Homogenisieren (DE-588)4138007-1 gnd Homogenisierungsmethode (DE-588)4257770-6 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4138007-1 (DE-588)4257770-6 |
title | Homogenization of Differential Operators and Integral Functionals |
title_auth | Homogenization of Differential Operators and Integral Functionals |
title_exact_search | Homogenization of Differential Operators and Integral Functionals |
title_full | Homogenization of Differential Operators and Integral Functionals by V. V. Jikov, S. M. Kozlov, O. A. Oleinik |
title_fullStr | Homogenization of Differential Operators and Integral Functionals by V. V. Jikov, S. M. Kozlov, O. A. Oleinik |
title_full_unstemmed | Homogenization of Differential Operators and Integral Functionals by V. V. Jikov, S. M. Kozlov, O. A. Oleinik |
title_short | Homogenization of Differential Operators and Integral Functionals |
title_sort | homogenization of differential operators and integral functionals |
topic | Mathematics Global analysis (Mathematics) Distribution (Probability theory) Analysis Theoretical, Mathematical and Computational Physics Probability Theory and Stochastic Processes Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Homogenisieren (DE-588)4138007-1 gnd Homogenisierungsmethode (DE-588)4257770-6 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Distribution (Probability theory) Analysis Theoretical, Mathematical and Computational Physics Probability Theory and Stochastic Processes Mathematik Partielle Differentialgleichung Homogenisieren Homogenisierungsmethode |
url | https://doi.org/10.1007/978-3-642-84659-5 |
work_keys_str_mv | AT zikovvasilijvasilevic homogenizationofdifferentialoperatorsandintegralfunctionals AT kozlovsm homogenizationofdifferentialoperatorsandintegralfunctionals AT olejnikolʹgaa homogenizationofdifferentialoperatorsandintegralfunctionals |