Cohomology of Sheaves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1986
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis |
Beschreibung: | 1 Online-Ressource (XII, 464 p) |
ISBN: | 9783642827839 9783540163893 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-642-82783-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423041 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1986 |||| o||u| ||||||eng d | ||
020 | |a 9783642827839 |c Online |9 978-3-642-82783-9 | ||
020 | |a 9783540163893 |c Print |9 978-3-540-16389-3 | ||
024 | 7 | |a 10.1007/978-3-642-82783-9 |2 doi | |
035 | |a (OCoLC)863856413 | ||
035 | |a (DE-599)BVBBV042423041 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Iversen, Birger |e Verfasser |4 aut | |
245 | 1 | 0 | |a Cohomology of Sheaves |c by Birger Iversen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1986 | |
300 | |a 1 Online-Ressource (XII, 464 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kohomologietheorie |0 (DE-588)4164610-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Garbentheorie |0 (DE-588)4155956-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |D s |
689 | 0 | 1 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Garbentheorie |0 (DE-588)4155956-3 |D s |
689 | 1 | 1 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Garbentheorie |0 (DE-588)4155956-3 |D s |
689 | 2 | 1 | |a Kohomologietheorie |0 (DE-588)4164610-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-82783-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858458 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098315235328 |
---|---|
any_adam_object | |
author | Iversen, Birger |
author_facet | Iversen, Birger |
author_role | aut |
author_sort | Iversen, Birger |
author_variant | b i bi |
building | Verbundindex |
bvnumber | BV042423041 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863856413 (DE-599)BVBBV042423041 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-82783-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03202nmm a2200601zc 4500</leader><controlfield tag="001">BV042423041</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642827839</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-82783-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540163893</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-16389-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-82783-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863856413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423041</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Iversen, Birger</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cohomology of Sheaves</subfield><subfield code="c">by Birger Iversen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 464 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Kohomologietheorie</subfield><subfield code="0">(DE-588)4164610-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-82783-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858458</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423041 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642827839 9783540163893 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858458 |
oclc_num | 863856413 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 464 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Iversen, Birger Verfasser aut Cohomology of Sheaves by Birger Iversen Berlin, Heidelberg Springer Berlin Heidelberg 1986 1 Online-Ressource (XII, 464 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 This text exposes the basic features of cohomology of sheaves and its applications. The general theory of sheaves is very limited and no essential result is obtainable without turn ing to particular classes of topological spaces. The most satis factory general class is that of locally compact spaces and it is the study of such spaces which occupies the central part of this text. The fundamental concepts in the study of locally compact spaces is cohomology with compact support and a particular class of sheaves,the so-called soft sheaves. This class plays a double role as the basic vehicle for the internal theory and is the key to applications in analysis. The basic example of a soft sheaf is the sheaf of smooth functions on ~n or more generally on any smooth manifold. A rather large effort has been made to demon strate the relevance of sheaf theory in even the most elementary analysis. This process has been reversed in order to base the fundamental calculations in sheaf theory on elementary analysis Mathematics Algebraic topology Algebraic Topology Mathematik Kohomologietheorie (DE-588)4164610-1 gnd rswk-swf Garbe Mathematik (DE-588)4019261-1 gnd rswk-swf Garbentheorie (DE-588)4155956-3 gnd rswk-swf Kohomologie (DE-588)4031700-6 gnd rswk-swf Garbe Mathematik (DE-588)4019261-1 s Kohomologie (DE-588)4031700-6 s 1\p DE-604 Garbentheorie (DE-588)4155956-3 s 2\p DE-604 Kohomologietheorie (DE-588)4164610-1 s 3\p DE-604 https://doi.org/10.1007/978-3-642-82783-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Iversen, Birger Cohomology of Sheaves Mathematics Algebraic topology Algebraic Topology Mathematik Kohomologietheorie (DE-588)4164610-1 gnd Garbe Mathematik (DE-588)4019261-1 gnd Garbentheorie (DE-588)4155956-3 gnd Kohomologie (DE-588)4031700-6 gnd |
subject_GND | (DE-588)4164610-1 (DE-588)4019261-1 (DE-588)4155956-3 (DE-588)4031700-6 |
title | Cohomology of Sheaves |
title_auth | Cohomology of Sheaves |
title_exact_search | Cohomology of Sheaves |
title_full | Cohomology of Sheaves by Birger Iversen |
title_fullStr | Cohomology of Sheaves by Birger Iversen |
title_full_unstemmed | Cohomology of Sheaves by Birger Iversen |
title_short | Cohomology of Sheaves |
title_sort | cohomology of sheaves |
topic | Mathematics Algebraic topology Algebraic Topology Mathematik Kohomologietheorie (DE-588)4164610-1 gnd Garbe Mathematik (DE-588)4019261-1 gnd Garbentheorie (DE-588)4155956-3 gnd Kohomologie (DE-588)4031700-6 gnd |
topic_facet | Mathematics Algebraic topology Algebraic Topology Mathematik Kohomologietheorie Garbe Mathematik Garbentheorie Kohomologie |
url | https://doi.org/10.1007/978-3-642-82783-9 |
work_keys_str_mv | AT iversenbirger cohomologyofsheaves |