Stochastic Population Theories:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1974
|
Schriftenreihe: | Lecture Notes in Biomathematics
3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These notes serve as an introduction to stochastic theories which are useful in population biology; they are based on a course given at the Courant Institute, New York, in the Spring of 1974. In order to make the material. accessible to a wide audience, it is assumed that the reader has only a slight acquaintance with probability theory and differential equations. The more sophisticated topics, such as the qualitative behavior of nonlinear models, are approached through a succession of simpler problems. Emphasis is placed upon intuitive interpretations, rather than upon formal proofs. In most cases, the reader is referred elsewhere for a rigorous development. On the other hand, an attempt has been made to treat simple, useful models in some detail. Thus these notes complement the existing mathematical literature, and there appears to be little duplication of existing works. The authors are indebted to Miss Jeanette Figueroa for her beautiful and speedy typing of this work. The research was supported by the National Science Foundation under Grant No. GP-32996X3. CONTENTS I. LINEAR MODELS •••••. •••••••••••••••. . ••••••••••••••••••••••••••••••••••••••• 1 1. The Poisson Process ••••••••••••••••••••••••••. ••. •••••••••••. •••••••••• 1 2. Birth and Death Processes 5 2. 1 Linear Birth Process 5 2. 2 Linear Birth and Death Process •••••. ••••••. ••••••••••••••. •••••••• 7 2. 3 Birth and Death with Carrying Capacity ••••••••. •••. ••••••. ••••••. • 16 3. Branching Processes •••••••••••••••••••. •••••••. ••••••••. ••••••••••••••• 20 3. 1 Continuous Time . •••. ••••••••••. •••••••••••••••••••. ••••••••. •••• |
Beschreibung: | 1 Online-Ressource (VI, 114 p) |
ISBN: | 9783642808838 9783540070108 |
ISSN: | 0341-633X |
DOI: | 10.1007/978-3-642-80883-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423024 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1974 |||| o||u| ||||||eng d | ||
020 | |a 9783642808838 |c Online |9 978-3-642-80883-8 | ||
020 | |a 9783540070108 |c Print |9 978-3-540-07010-8 | ||
024 | 7 | |a 10.1007/978-3-642-80883-8 |2 doi | |
035 | |a (OCoLC)863820833 | ||
035 | |a (DE-599)BVBBV042423024 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ludwig, Donald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Population Theories |c by Donald Ludwig |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1974 | |
300 | |a 1 Online-Ressource (VI, 114 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Biomathematics |v 3 |x 0341-633X | |
500 | |a These notes serve as an introduction to stochastic theories which are useful in population biology; they are based on a course given at the Courant Institute, New York, in the Spring of 1974. In order to make the material. accessible to a wide audience, it is assumed that the reader has only a slight acquaintance with probability theory and differential equations. The more sophisticated topics, such as the qualitative behavior of nonlinear models, are approached through a succession of simpler problems. Emphasis is placed upon intuitive interpretations, rather than upon formal proofs. In most cases, the reader is referred elsewhere for a rigorous development. On the other hand, an attempt has been made to treat simple, useful models in some detail. Thus these notes complement the existing mathematical literature, and there appears to be little duplication of existing works. The authors are indebted to Miss Jeanette Figueroa for her beautiful and speedy typing of this work. | ||
500 | |a The research was supported by the National Science Foundation under Grant No. GP-32996X3. CONTENTS I. LINEAR MODELS •••••. •••••••••••••••. . ••••••••••••••••••••••••••••••••••••••• 1 1. The Poisson Process ••••••••••••••••••••••••••. ••. •••••••••••. •••••••••• 1 2. Birth and Death Processes 5 2. 1 Linear Birth Process 5 2. 2 Linear Birth and Death Process •••••. ••••••. ••••••••••••••. •••••••• 7 2. 3 Birth and Death with Carrying Capacity ••••••••. •••. ••••••. ••••••. • 16 3. Branching Processes •••••••••••••••••••. •••••••. ••••••••. ••••••••••••••• 20 3. | ||
500 | |a 1 Continuous Time . •••. ••••••••••. •••••••••••••••••••. ••••••••. •••• | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Demographie |0 (DE-588)4011412-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastik |0 (DE-588)4121729-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Populationsbiologie |0 (DE-588)4046800-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bevölkerungsstruktur |0 (DE-588)4246600-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Demographie |0 (DE-588)4011412-0 |D s |
689 | 0 | 1 | |a Stochastik |0 (DE-588)4121729-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Demographie |0 (DE-588)4011412-0 |D s |
689 | 1 | 1 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Populationsbiologie |0 (DE-588)4046800-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Bevölkerungsstruktur |0 (DE-588)4246600-3 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-80883-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858441 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098258612224 |
---|---|
any_adam_object | |
author | Ludwig, Donald |
author_facet | Ludwig, Donald |
author_role | aut |
author_sort | Ludwig, Donald |
author_variant | d l dl |
building | Verbundindex |
bvnumber | BV042423024 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863820833 (DE-599)BVBBV042423024 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-80883-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04638nmm a2200661zcb4500</leader><controlfield tag="001">BV042423024</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1974 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642808838</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-80883-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540070108</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-07010-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-80883-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863820833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423024</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ludwig, Donald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Population Theories</subfield><subfield code="c">by Donald Ludwig</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 114 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Biomathematics</subfield><subfield code="v">3</subfield><subfield code="x">0341-633X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes serve as an introduction to stochastic theories which are useful in population biology; they are based on a course given at the Courant Institute, New York, in the Spring of 1974. In order to make the material. accessible to a wide audience, it is assumed that the reader has only a slight acquaintance with probability theory and differential equations. The more sophisticated topics, such as the qualitative behavior of nonlinear models, are approached through a succession of simpler problems. Emphasis is placed upon intuitive interpretations, rather than upon formal proofs. In most cases, the reader is referred elsewhere for a rigorous development. On the other hand, an attempt has been made to treat simple, useful models in some detail. Thus these notes complement the existing mathematical literature, and there appears to be little duplication of existing works. The authors are indebted to Miss Jeanette Figueroa for her beautiful and speedy typing of this work. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The research was supported by the National Science Foundation under Grant No. GP-32996X3. CONTENTS I. LINEAR MODELS •••••. •••••••••••••••. . ••••••••••••••••••••••••••••••••••••••• 1 1. The Poisson Process ••••••••••••••••••••••••••. ••. •••••••••••. •••••••••• 1 2. Birth and Death Processes 5 2. 1 Linear Birth Process 5 2. 2 Linear Birth and Death Process •••••. ••••••. ••••••••••••••. •••••••• 7 2. 3 Birth and Death with Carrying Capacity ••••••••. •••. ••••••. ••••••. • 16 3. Branching Processes •••••••••••••••••••. •••••••. ••••••••. ••••••••••••••• 20 3. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1 Continuous Time . •••. ••••••••••. •••••••••••••••••••. ••••••••. ••••</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Demographie</subfield><subfield code="0">(DE-588)4011412-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Populationsbiologie</subfield><subfield code="0">(DE-588)4046800-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bevölkerungsstruktur</subfield><subfield code="0">(DE-588)4246600-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Demographie</subfield><subfield code="0">(DE-588)4011412-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Demographie</subfield><subfield code="0">(DE-588)4011412-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Populationsbiologie</subfield><subfield code="0">(DE-588)4046800-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Bevölkerungsstruktur</subfield><subfield code="0">(DE-588)4246600-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-80883-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858441</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423024 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642808838 9783540070108 |
issn | 0341-633X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858441 |
oclc_num | 863820833 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 114 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Biomathematics |
spelling | Ludwig, Donald Verfasser aut Stochastic Population Theories by Donald Ludwig Berlin, Heidelberg Springer Berlin Heidelberg 1974 1 Online-Ressource (VI, 114 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Biomathematics 3 0341-633X These notes serve as an introduction to stochastic theories which are useful in population biology; they are based on a course given at the Courant Institute, New York, in the Spring of 1974. In order to make the material. accessible to a wide audience, it is assumed that the reader has only a slight acquaintance with probability theory and differential equations. The more sophisticated topics, such as the qualitative behavior of nonlinear models, are approached through a succession of simpler problems. Emphasis is placed upon intuitive interpretations, rather than upon formal proofs. In most cases, the reader is referred elsewhere for a rigorous development. On the other hand, an attempt has been made to treat simple, useful models in some detail. Thus these notes complement the existing mathematical literature, and there appears to be little duplication of existing works. The authors are indebted to Miss Jeanette Figueroa for her beautiful and speedy typing of this work. The research was supported by the National Science Foundation under Grant No. GP-32996X3. CONTENTS I. LINEAR MODELS •••••. •••••••••••••••. . ••••••••••••••••••••••••••••••••••••••• 1 1. The Poisson Process ••••••••••••••••••••••••••. ••. •••••••••••. •••••••••• 1 2. Birth and Death Processes 5 2. 1 Linear Birth Process 5 2. 2 Linear Birth and Death Process •••••. ••••••. ••••••••••••••. •••••••• 7 2. 3 Birth and Death with Carrying Capacity ••••••••. •••. ••••••. ••••••. • 16 3. Branching Processes •••••••••••••••••••. •••••••. ••••••••. ••••••••••••••• 20 3. 1 Continuous Time . •••. ••••••••••. •••••••••••••••••••. ••••••••. •••• Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Demographie (DE-588)4011412-0 gnd rswk-swf Stochastik (DE-588)4121729-9 gnd rswk-swf Populationsbiologie (DE-588)4046800-8 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Bevölkerungsstruktur (DE-588)4246600-3 gnd rswk-swf Demographie (DE-588)4011412-0 s Stochastik (DE-588)4121729-9 s 1\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 2\p DE-604 Populationsbiologie (DE-588)4046800-8 s 3\p DE-604 Bevölkerungsstruktur (DE-588)4246600-3 s 4\p DE-604 https://doi.org/10.1007/978-3-642-80883-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ludwig, Donald Stochastic Population Theories Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Demographie (DE-588)4011412-0 gnd Stochastik (DE-588)4121729-9 gnd Populationsbiologie (DE-588)4046800-8 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Bevölkerungsstruktur (DE-588)4246600-3 gnd |
subject_GND | (DE-588)4011412-0 (DE-588)4121729-9 (DE-588)4046800-8 (DE-588)4064324-4 (DE-588)4246600-3 |
title | Stochastic Population Theories |
title_auth | Stochastic Population Theories |
title_exact_search | Stochastic Population Theories |
title_full | Stochastic Population Theories by Donald Ludwig |
title_fullStr | Stochastic Population Theories by Donald Ludwig |
title_full_unstemmed | Stochastic Population Theories by Donald Ludwig |
title_short | Stochastic Population Theories |
title_sort | stochastic population theories |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Demographie (DE-588)4011412-0 gnd Stochastik (DE-588)4121729-9 gnd Populationsbiologie (DE-588)4046800-8 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Bevölkerungsstruktur (DE-588)4246600-3 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Demographie Stochastik Populationsbiologie Wahrscheinlichkeitsrechnung Bevölkerungsstruktur |
url | https://doi.org/10.1007/978-3-642-80883-8 |
work_keys_str_mv | AT ludwigdonald stochasticpopulationtheories |