Numerical Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Springer Series in Computational Mathematics
21 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | As suggested by the title of this book Numerical Toolbox for Verified Computing, we present an extensive set of sophisticated tools to solve basic numerical problems with a verification of the results. We use the features of the scientific computer language PASCAL-XSC to offer modules that can be combined by the reader to his/her individual needs. Our overriding concern is reliability - the automatic verification of the result a computer returns for a given problem. All algorithms we present are influenced by this central concern. We must point out that there is no relationship between our methods of numerical result verification and the methods of program verification to prove the correctness of an imple~entation for a given algorithm. This book is the first to offer a general discussion on • arithmetic and computational reliability, • analytical mathematics and verification techniques, • algorithms, and • (most importantly) actual implementations in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. For some topics, we have placed a little more emphasis on the algorithms. For other topics, where the mathematical prerequisites are universally held, we have tended towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation. For all topics, we present exam ples, exercises, and numerical results demonstrating the application of the routines presented |
Beschreibung: | 1 Online-Ressource (XV, 339p. 28 illus) |
ISBN: | 9783642784231 9783642784255 |
ISSN: | 0179-3632 |
DOI: | 10.1007/978-3-642-78423-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423007 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783642784231 |c Online |9 978-3-642-78423-1 | ||
020 | |a 9783642784255 |c Print |9 978-3-642-78425-5 | ||
024 | 7 | |a 10.1007/978-3-642-78423-1 |2 doi | |
035 | |a (OCoLC)863814737 | ||
035 | |a (DE-599)BVBBV042423007 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kulisch, Ulrich |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Toolbox for Verified Computing I |b Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs |c by Ulrich Kulisch, Rolf Hammer, Dietmar Ratz, Matthias Hocks |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (XV, 339p. 28 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Computational Mathematics |v 21 |x 0179-3632 | |
500 | |a As suggested by the title of this book Numerical Toolbox for Verified Computing, we present an extensive set of sophisticated tools to solve basic numerical problems with a verification of the results. We use the features of the scientific computer language PASCAL-XSC to offer modules that can be combined by the reader to his/her individual needs. Our overriding concern is reliability - the automatic verification of the result a computer returns for a given problem. All algorithms we present are influenced by this central concern. We must point out that there is no relationship between our methods of numerical result verification and the methods of program verification to prove the correctness of an imple~entation for a given algorithm. This book is the first to offer a general discussion on • arithmetic and computational reliability, • analytical mathematics and verification techniques, • algorithms, and • (most importantly) actual implementations in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. For some topics, we have placed a little more emphasis on the algorithms. For other topics, where the mathematical prerequisites are universally held, we have tended towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation. For all topics, we present exam ples, exercises, and numerical results demonstrating the application of the routines presented | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Programming Techniques | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Hammer, Rolf |e Sonstige |4 oth | |
700 | 1 | |a Ratz, Dietmar |e Sonstige |4 oth | |
700 | 1 | |a Hocks, Matthias |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-78423-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858424 |
Datensatz im Suchindex
_version_ | 1804153098170531840 |
---|---|
any_adam_object | |
author | Kulisch, Ulrich |
author_facet | Kulisch, Ulrich |
author_role | aut |
author_sort | Kulisch, Ulrich |
author_variant | u k uk |
building | Verbundindex |
bvnumber | BV042423007 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863814737 (DE-599)BVBBV042423007 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-78423-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03193nmm a2200481zcb4500</leader><controlfield tag="001">BV042423007</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642784231</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-78423-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642784255</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-78425-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-78423-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863814737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423007</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kulisch, Ulrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Toolbox for Verified Computing I</subfield><subfield code="b">Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs</subfield><subfield code="c">by Ulrich Kulisch, Rolf Hammer, Dietmar Ratz, Matthias Hocks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 339p. 28 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Mathematics</subfield><subfield code="v">21</subfield><subfield code="x">0179-3632</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">As suggested by the title of this book Numerical Toolbox for Verified Computing, we present an extensive set of sophisticated tools to solve basic numerical problems with a verification of the results. We use the features of the scientific computer language PASCAL-XSC to offer modules that can be combined by the reader to his/her individual needs. Our overriding concern is reliability - the automatic verification of the result a computer returns for a given problem. All algorithms we present are influenced by this central concern. We must point out that there is no relationship between our methods of numerical result verification and the methods of program verification to prove the correctness of an imple~entation for a given algorithm. This book is the first to offer a general discussion on • arithmetic and computational reliability, • analytical mathematics and verification techniques, • algorithms, and • (most importantly) actual implementations in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. For some topics, we have placed a little more emphasis on the algorithms. For other topics, where the mathematical prerequisites are universally held, we have tended towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation. For all topics, we present exam ples, exercises, and numerical results demonstrating the application of the routines presented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hammer, Rolf</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ratz, Dietmar</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hocks, Matthias</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-78423-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858424</subfield></datafield></record></collection> |
id | DE-604.BV042423007 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642784231 9783642784255 |
issn | 0179-3632 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858424 |
oclc_num | 863814737 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 339p. 28 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Computational Mathematics |
spelling | Kulisch, Ulrich Verfasser aut Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs by Ulrich Kulisch, Rolf Hammer, Dietmar Ratz, Matthias Hocks Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (XV, 339p. 28 illus) txt rdacontent c rdamedia cr rdacarrier Springer Series in Computational Mathematics 21 0179-3632 As suggested by the title of this book Numerical Toolbox for Verified Computing, we present an extensive set of sophisticated tools to solve basic numerical problems with a verification of the results. We use the features of the scientific computer language PASCAL-XSC to offer modules that can be combined by the reader to his/her individual needs. Our overriding concern is reliability - the automatic verification of the result a computer returns for a given problem. All algorithms we present are influenced by this central concern. We must point out that there is no relationship between our methods of numerical result verification and the methods of program verification to prove the correctness of an imple~entation for a given algorithm. This book is the first to offer a general discussion on • arithmetic and computational reliability, • analytical mathematics and verification techniques, • algorithms, and • (most importantly) actual implementations in the form of working computer routines. Our task has been to find the right balance among these ingredients for each topic. For some topics, we have placed a little more emphasis on the algorithms. For other topics, where the mathematical prerequisites are universally held, we have tended towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation. For all topics, we present exam ples, exercises, and numerical results demonstrating the application of the routines presented Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik Hammer, Rolf Sonstige oth Ratz, Dietmar Sonstige oth Hocks, Matthias Sonstige oth https://doi.org/10.1007/978-3-642-78423-1 Verlag Volltext |
spellingShingle | Kulisch, Ulrich Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik |
title | Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs |
title_auth | Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs |
title_exact_search | Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs |
title_full | Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs by Ulrich Kulisch, Rolf Hammer, Dietmar Ratz, Matthias Hocks |
title_fullStr | Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs by Ulrich Kulisch, Rolf Hammer, Dietmar Ratz, Matthias Hocks |
title_full_unstemmed | Numerical Toolbox for Verified Computing I Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs by Ulrich Kulisch, Rolf Hammer, Dietmar Ratz, Matthias Hocks |
title_short | Numerical Toolbox for Verified Computing I |
title_sort | numerical toolbox for verified computing i basic numerical problems theory algorithms and pascal xsc programs |
title_sub | Basic Numerical Problems Theory, Algorithms, and Pascal-XSC Programs |
topic | Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik |
topic_facet | Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik |
url | https://doi.org/10.1007/978-3-642-78423-1 |
work_keys_str_mv | AT kulischulrich numericaltoolboxforverifiedcomputingibasicnumericalproblemstheoryalgorithmsandpascalxscprograms AT hammerrolf numericaltoolboxforverifiedcomputingibasicnumericalproblemstheoryalgorithmsandpascalxscprograms AT ratzdietmar numericaltoolboxforverifiedcomputingibasicnumericalproblemstheoryalgorithmsandpascalxscprograms AT hocksmatthias numericaltoolboxforverifiedcomputingibasicnumericalproblemstheoryalgorithmsandpascalxscprograms |