Symmetries, Topology and Resonances in Hamiltonian Mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1996
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics
31 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | John Hornstein has written about the author's theorem on nonintegrability of geodesic flows on closed surfaces of genus greater than one: "Here is an example of how differential geometry, differential and algebraic topology, and Newton's laws make music together" (Amer. Math. Monthly, November 1989). Kozlov's book is a systematic introduction to the problem of exact integration of equations of dynamics. The key to the solution is to find nontrivial symmetries of Hamiltonian systems. After Poincaré's work it became clear that topological considerations and the analysis of resonance phenomena play a crucial role in the problem on the existence of symmetry fields and nontrivial conservation laws |
Beschreibung: | 1 Online-Ressource (XI, 378p. 32 illus) |
ISBN: | 9783642783937 9783642783951 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-78393-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423004 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783642783937 |c Online |9 978-3-642-78393-7 | ||
020 | |a 9783642783951 |c Print |9 978-3-642-78395-1 | ||
024 | 7 | |a 10.1007/978-3-642-78393-7 |2 doi | |
035 | |a (OCoLC)1184379543 | ||
035 | |a (DE-599)BVBBV042423004 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kozlov, Valerij V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetries, Topology and Resonances in Hamiltonian Mechanics |c by Valerij V. Kozlov |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1996 | |
300 | |a 1 Online-Ressource (XI, 378p. 32 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |v 31 |x 0071-1136 | |
500 | |a John Hornstein has written about the author's theorem on nonintegrability of geodesic flows on closed surfaces of genus greater than one: "Here is an example of how differential geometry, differential and algebraic topology, and Newton's laws make music together" (Amer. Math. Monthly, November 1989). Kozlov's book is a systematic introduction to the problem of exact integration of equations of dynamics. The key to the solution is to find nontrivial symmetries of Hamiltonian systems. After Poincaré's work it became clear that topological considerations and the analysis of resonance phenomena play a crucial role in the problem on the existence of symmetry fields and nontrivial conservation laws | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches Prinzip |0 (DE-588)4158958-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hamiltonsches Prinzip |0 (DE-588)4158958-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-78393-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858421 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098176823296 |
---|---|
any_adam_object | |
author | Kozlov, Valerij V. |
author_facet | Kozlov, Valerij V. |
author_role | aut |
author_sort | Kozlov, Valerij V. |
author_variant | v v k vv vvk |
building | Verbundindex |
bvnumber | BV042423004 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184379543 (DE-599)BVBBV042423004 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-78393-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03133nmm a2200625zcb4500</leader><controlfield tag="001">BV042423004</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642783937</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-78393-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642783951</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-78395-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-78393-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184379543</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423004</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kozlov, Valerij V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetries, Topology and Resonances in Hamiltonian Mechanics</subfield><subfield code="c">by Valerij V. Kozlov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 378p. 32 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">31</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">John Hornstein has written about the author's theorem on nonintegrability of geodesic flows on closed surfaces of genus greater than one: "Here is an example of how differential geometry, differential and algebraic topology, and Newton's laws make music together" (Amer. Math. Monthly, November 1989). Kozlov's book is a systematic introduction to the problem of exact integration of equations of dynamics. The key to the solution is to find nontrivial symmetries of Hamiltonian systems. After Poincaré's work it became clear that topological considerations and the analysis of resonance phenomena play a crucial role in the problem on the existence of symmetry fields and nontrivial conservation laws</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches Prinzip</subfield><subfield code="0">(DE-588)4158958-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hamiltonsches Prinzip</subfield><subfield code="0">(DE-588)4158958-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-78393-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858421</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423004 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642783937 9783642783951 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858421 |
oclc_num | 1184379543 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 378p. 32 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |
spelling | Kozlov, Valerij V. Verfasser aut Symmetries, Topology and Resonances in Hamiltonian Mechanics by Valerij V. Kozlov Berlin, Heidelberg Springer Berlin Heidelberg 1996 1 Online-Ressource (XI, 378p. 32 illus) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics 31 0071-1136 John Hornstein has written about the author's theorem on nonintegrability of geodesic flows on closed surfaces of genus greater than one: "Here is an example of how differential geometry, differential and algebraic topology, and Newton's laws make music together" (Amer. Math. Monthly, November 1989). Kozlov's book is a systematic introduction to the problem of exact integration of equations of dynamics. The key to the solution is to find nontrivial symmetries of Hamiltonian systems. After Poincaré's work it became clear that topological considerations and the analysis of resonance phenomena play a crucial role in the problem on the existence of symmetry fields and nontrivial conservation laws Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik Integrables System (DE-588)4114032-1 gnd rswk-swf Hamilton-Formalismus (DE-588)4376155-0 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Hamiltonsches Prinzip (DE-588)4158958-0 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Integrables System (DE-588)4114032-1 s 1\p DE-604 Hamiltonsches Prinzip (DE-588)4158958-0 s 2\p DE-604 Hamilton-Formalismus (DE-588)4376155-0 s 3\p DE-604 https://doi.org/10.1007/978-3-642-78393-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kozlov, Valerij V. Symmetries, Topology and Resonances in Hamiltonian Mechanics Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik Integrables System (DE-588)4114032-1 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Hamiltonsches System (DE-588)4139943-2 gnd Hamiltonsches Prinzip (DE-588)4158958-0 gnd |
subject_GND | (DE-588)4114032-1 (DE-588)4376155-0 (DE-588)4139943-2 (DE-588)4158958-0 |
title | Symmetries, Topology and Resonances in Hamiltonian Mechanics |
title_auth | Symmetries, Topology and Resonances in Hamiltonian Mechanics |
title_exact_search | Symmetries, Topology and Resonances in Hamiltonian Mechanics |
title_full | Symmetries, Topology and Resonances in Hamiltonian Mechanics by Valerij V. Kozlov |
title_fullStr | Symmetries, Topology and Resonances in Hamiltonian Mechanics by Valerij V. Kozlov |
title_full_unstemmed | Symmetries, Topology and Resonances in Hamiltonian Mechanics by Valerij V. Kozlov |
title_short | Symmetries, Topology and Resonances in Hamiltonian Mechanics |
title_sort | symmetries topology and resonances in hamiltonian mechanics |
topic | Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik Integrables System (DE-588)4114032-1 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Hamiltonsches System (DE-588)4139943-2 gnd Hamiltonsches Prinzip (DE-588)4158958-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Mathematical physics Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik Integrables System Hamilton-Formalismus Hamiltonsches System Hamiltonsches Prinzip |
url | https://doi.org/10.1007/978-3-642-78393-7 |
work_keys_str_mv | AT kozlovvalerijv symmetriestopologyandresonancesinhamiltonianmechanics |