Molecular Orbital Calculations Using Chemical Graph Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive at answers quickly without the aid of a group theory or a computer program of which the experimentalist has no understanding. The merging of mathematical graph theory with chemical theory is the formalization of what most chemists do in a more or less intuitive mode. Chemists currently use graphical images to embody chemical information in compact form which can be transformed into algebraical sets. Chemical graph theory provides simple descriptive interpretations of complicated quantum mechanical calculations and is, thereby, in-itself-by-itself an important discipline of study |
Beschreibung: | 1 Online-Ressource (XI, 115p. 30 illus) |
ISBN: | 9783642778940 9783540561347 |
DOI: | 10.1007/978-3-642-77894-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422996 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783642778940 |c Online |9 978-3-642-77894-0 | ||
020 | |a 9783540561347 |c Print |9 978-3-540-56134-7 | ||
024 | 7 | |a 10.1007/978-3-642-77894-0 |2 doi | |
035 | |a (OCoLC)1184436748 | ||
035 | |a (DE-599)BVBBV042422996 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dias, Jerry Ray |e Verfasser |4 aut | |
245 | 1 | 0 | |a Molecular Orbital Calculations Using Chemical Graph Theory |c by Jerry Ray Dias |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (XI, 115p. 30 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive at answers quickly without the aid of a group theory or a computer program of which the experimentalist has no understanding. The merging of mathematical graph theory with chemical theory is the formalization of what most chemists do in a more or less intuitive mode. Chemists currently use graphical images to embody chemical information in compact form which can be transformed into algebraical sets. Chemical graph theory provides simple descriptive interpretations of complicated quantum mechanical calculations and is, thereby, in-itself-by-itself an important discipline of study | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Science (General) | |
650 | 4 | |a Chemistry, Organic | |
650 | 4 | |a Chemistry | |
650 | 4 | |a Graph Theory | |
650 | 4 | |a Organic Chemistry | |
650 | 4 | |a Science, general | |
650 | 4 | |a Theoretical and Computational Chemistry | |
650 | 4 | |a Chemie | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a MO-Rechnung |0 (DE-588)4170547-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekülorbital |0 (DE-588)4127526-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Molekülorbital |0 (DE-588)4127526-3 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a MO-Rechnung |0 (DE-588)4170547-6 |D s |
689 | 1 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-77894-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858413 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098162143232 |
---|---|
any_adam_object | |
author | Dias, Jerry Ray |
author_facet | Dias, Jerry Ray |
author_role | aut |
author_sort | Dias, Jerry Ray |
author_variant | j r d jr jrd |
building | Verbundindex |
bvnumber | BV042422996 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184436748 (DE-599)BVBBV042422996 |
dewey-full | 511.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.5 |
dewey-search | 511.5 |
dewey-sort | 3511.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-77894-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03742nmm a2200613zc 4500</leader><controlfield tag="001">BV042422996</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642778940</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-77894-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540561347</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-56134-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-77894-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184436748</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422996</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dias, Jerry Ray</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular Orbital Calculations Using Chemical Graph Theory</subfield><subfield code="c">by Jerry Ray Dias</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 115p. 30 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive at answers quickly without the aid of a group theory or a computer program of which the experimentalist has no understanding. The merging of mathematical graph theory with chemical theory is the formalization of what most chemists do in a more or less intuitive mode. Chemists currently use graphical images to embody chemical information in compact form which can be transformed into algebraical sets. Chemical graph theory provides simple descriptive interpretations of complicated quantum mechanical calculations and is, thereby, in-itself-by-itself an important discipline of study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Organic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Computational Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MO-Rechnung</subfield><subfield code="0">(DE-588)4170547-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekülorbital</subfield><subfield code="0">(DE-588)4127526-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekülorbital</subfield><subfield code="0">(DE-588)4127526-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">MO-Rechnung</subfield><subfield code="0">(DE-588)4170547-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-77894-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858413</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422996 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642778940 9783540561347 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858413 |
oclc_num | 1184436748 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 115p. 30 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Dias, Jerry Ray Verfasser aut Molecular Orbital Calculations Using Chemical Graph Theory by Jerry Ray Dias Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (XI, 115p. 30 illus) txt rdacontent c rdamedia cr rdacarrier Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive at answers quickly without the aid of a group theory or a computer program of which the experimentalist has no understanding. The merging of mathematical graph theory with chemical theory is the formalization of what most chemists do in a more or less intuitive mode. Chemists currently use graphical images to embody chemical information in compact form which can be transformed into algebraical sets. Chemical graph theory provides simple descriptive interpretations of complicated quantum mechanical calculations and is, thereby, in-itself-by-itself an important discipline of study Mathematics Science (General) Chemistry, Organic Chemistry Graph Theory Organic Chemistry Science, general Theoretical and Computational Chemistry Chemie Mathematik Naturwissenschaft MO-Rechnung (DE-588)4170547-6 gnd rswk-swf Molekülorbital (DE-588)4127526-3 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf Molekülorbital (DE-588)4127526-3 s Graphentheorie (DE-588)4113782-6 s 1\p DE-604 MO-Rechnung (DE-588)4170547-6 s 2\p DE-604 https://doi.org/10.1007/978-3-642-77894-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dias, Jerry Ray Molecular Orbital Calculations Using Chemical Graph Theory Mathematics Science (General) Chemistry, Organic Chemistry Graph Theory Organic Chemistry Science, general Theoretical and Computational Chemistry Chemie Mathematik Naturwissenschaft MO-Rechnung (DE-588)4170547-6 gnd Molekülorbital (DE-588)4127526-3 gnd Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4170547-6 (DE-588)4127526-3 (DE-588)4113782-6 |
title | Molecular Orbital Calculations Using Chemical Graph Theory |
title_auth | Molecular Orbital Calculations Using Chemical Graph Theory |
title_exact_search | Molecular Orbital Calculations Using Chemical Graph Theory |
title_full | Molecular Orbital Calculations Using Chemical Graph Theory by Jerry Ray Dias |
title_fullStr | Molecular Orbital Calculations Using Chemical Graph Theory by Jerry Ray Dias |
title_full_unstemmed | Molecular Orbital Calculations Using Chemical Graph Theory by Jerry Ray Dias |
title_short | Molecular Orbital Calculations Using Chemical Graph Theory |
title_sort | molecular orbital calculations using chemical graph theory |
topic | Mathematics Science (General) Chemistry, Organic Chemistry Graph Theory Organic Chemistry Science, general Theoretical and Computational Chemistry Chemie Mathematik Naturwissenschaft MO-Rechnung (DE-588)4170547-6 gnd Molekülorbital (DE-588)4127526-3 gnd Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Mathematics Science (General) Chemistry, Organic Chemistry Graph Theory Organic Chemistry Science, general Theoretical and Computational Chemistry Chemie Mathematik Naturwissenschaft MO-Rechnung Molekülorbital Graphentheorie |
url | https://doi.org/10.1007/978-3-642-77894-0 |
work_keys_str_mv | AT diasjerryray molecularorbitalcalculationsusingchemicalgraphtheory |