General Topology II: Compactness, Homologies of General Spaces
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1996
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
50 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume of the Encyclopaedia consists of two independent parts. The first contains a survey of results related to the concept of compactness in general topology. It highlights the role that compactness plays in many areas of general topology. The second part is devoted to homology and cohomology theories of general spaces. Special emphasis is placed on the method of sheaf theory as a unified approach to constructions of such theories. Both authors have succeeded in presenting a wealth of material that is of interest to students and researchers in the area of topology. Each part illustrates deep connections between important mathematical concepts. Both parts reflect a certain new way of looking at well known facts by establishing interesting relationships between specialized results belonging to diverse areas of mathematics |
Beschreibung: | 1 Online-Ressource (VII, 256p) |
ISBN: | 9783642770302 9783642770326 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-642-77030-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422992 | ||
003 | DE-604 | ||
005 | 20171215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783642770302 |c Online |9 978-3-642-77030-2 | ||
020 | |a 9783642770326 |c Print |9 978-3-642-77032-6 | ||
024 | 7 | |a 10.1007/978-3-642-77030-2 |2 doi | |
035 | |a (OCoLC)863804033 | ||
035 | |a (DE-599)BVBBV042422992 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a General Topology II |b Compactness, Homologies of General Spaces |c edited by A. V. Arhangel'skii |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1996 | |
300 | |a 1 Online-Ressource (VII, 256p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of Mathematical Sciences |v 50 |x 0938-0396 | |
500 | |a This volume of the Encyclopaedia consists of two independent parts. The first contains a survey of results related to the concept of compactness in general topology. It highlights the role that compactness plays in many areas of general topology. The second part is devoted to homology and cohomology theories of general spaces. Special emphasis is placed on the method of sheaf theory as a unified approach to constructions of such theories. Both authors have succeeded in presenting a wealth of material that is of interest to students and researchers in the area of topology. Each part illustrates deep connections between important mathematical concepts. Both parts reflect a certain new way of looking at well known facts by establishing interesting relationships between specialized results belonging to diverse areas of mathematics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a K-theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Arhangel'skii, A. V. |4 edt | |
830 | 0 | |a Encyclopaedia of Mathematical Sciences |v 50 |w (DE-604)BV024126459 |9 50 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-77030-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858409 |
Datensatz im Suchindex
_version_ | 1804153098125443072 |
---|---|
any_adam_object | |
author2 | Arhangel'skii, A. V. |
author2_role | edt |
author2_variant | a v a av ava |
author_facet | Arhangel'skii, A. V. |
building | Verbundindex |
bvnumber | BV042422992 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863804033 (DE-599)BVBBV042422992 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-77030-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02391nmm a2200469zcb4500</leader><controlfield tag="001">BV042422992</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642770302</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-77030-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642770326</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-77032-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-77030-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863804033</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">General Topology II</subfield><subfield code="b">Compactness, Homologies of General Spaces</subfield><subfield code="c">edited by A. V. Arhangel'skii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 256p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">50</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume of the Encyclopaedia consists of two independent parts. The first contains a survey of results related to the concept of compactness in general topology. It highlights the role that compactness plays in many areas of general topology. The second part is devoted to homology and cohomology theories of general spaces. Special emphasis is placed on the method of sheaf theory as a unified approach to constructions of such theories. Both authors have succeeded in presenting a wealth of material that is of interest to students and researchers in the area of topology. Each part illustrates deep connections between important mathematical concepts. Both parts reflect a certain new way of looking at well known facts by establishing interesting relationships between specialized results belonging to diverse areas of mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arhangel'skii, A. V.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">50</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">50</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-77030-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858409</subfield></datafield></record></collection> |
id | DE-604.BV042422992 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642770302 9783642770326 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858409 |
oclc_num | 863804033 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 256p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Encyclopaedia of Mathematical Sciences |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | General Topology II Compactness, Homologies of General Spaces edited by A. V. Arhangel'skii Berlin, Heidelberg Springer Berlin Heidelberg 1996 1 Online-Ressource (VII, 256p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 50 0938-0396 This volume of the Encyclopaedia consists of two independent parts. The first contains a survey of results related to the concept of compactness in general topology. It highlights the role that compactness plays in many areas of general topology. The second part is devoted to homology and cohomology theories of general spaces. Special emphasis is placed on the method of sheaf theory as a unified approach to constructions of such theories. Both authors have succeeded in presenting a wealth of material that is of interest to students and researchers in the area of topology. Each part illustrates deep connections between important mathematical concepts. Both parts reflect a certain new way of looking at well known facts by establishing interesting relationships between specialized results belonging to diverse areas of mathematics Mathematics K-theory Topological Groups Algebraic topology Algebraic Topology Topological Groups, Lie Groups K-Theory Mathematik Arhangel'skii, A. V. edt Encyclopaedia of Mathematical Sciences 50 (DE-604)BV024126459 50 https://doi.org/10.1007/978-3-642-77030-2 Verlag Volltext |
spellingShingle | General Topology II Compactness, Homologies of General Spaces Encyclopaedia of Mathematical Sciences Mathematics K-theory Topological Groups Algebraic topology Algebraic Topology Topological Groups, Lie Groups K-Theory Mathematik |
title | General Topology II Compactness, Homologies of General Spaces |
title_auth | General Topology II Compactness, Homologies of General Spaces |
title_exact_search | General Topology II Compactness, Homologies of General Spaces |
title_full | General Topology II Compactness, Homologies of General Spaces edited by A. V. Arhangel'skii |
title_fullStr | General Topology II Compactness, Homologies of General Spaces edited by A. V. Arhangel'skii |
title_full_unstemmed | General Topology II Compactness, Homologies of General Spaces edited by A. V. Arhangel'skii |
title_short | General Topology II |
title_sort | general topology ii compactness homologies of general spaces |
title_sub | Compactness, Homologies of General Spaces |
topic | Mathematics K-theory Topological Groups Algebraic topology Algebraic Topology Topological Groups, Lie Groups K-Theory Mathematik |
topic_facet | Mathematics K-theory Topological Groups Algebraic topology Algebraic Topology Topological Groups, Lie Groups K-Theory Mathematik |
url | https://doi.org/10.1007/978-3-642-77030-2 |
volume_link | (DE-604)BV024126459 |
work_keys_str_mv | AT arhangelskiiav generaltopologyiicompactnesshomologiesofgeneralspaces |