Banach Lattices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1991
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is mainly concerned with the theory of Banach lattices and with linear operators defined on, or with values in Banach lattices. Moreover we will always consider more general classes of Riesz spaces so long as this does not involve more complicated constructions or proofs. In particular, we will not treat any phenomena which occur only in the non-Banach lattice situation. Riesz spaces, also called vector lattices, K-lineals, are linear lattices which were first considered by F. Riesz, 1. Kantorovic, and H. Freudenthal. Subse quently other important contributions came from the Soviet Union (L.V. Kan torovic, A.J. Judin, A.G. Pinsker, and B.Z. Vulikh), Japan (H. Nakano, T. Oga sawara, and K. Yosida), and the United States (G. Birkhoff, H.F. Bohnenblust, S. Kakutani, and M.l\f. Stone). In the last twenty-five years the theory rapidly increased. Important con tributions came from the Dutch school (W.A.J. Luxemburg, A.C. Zaanen) and the Tiibinger school (lI.lI. Schaefer). In the middle seventies the research on this subject was essentially influenced by the books of H.H. Schaefer (1974) and W.A.J. Luxemburg and A.C. Zaanen (1971). More recently other impor tant books concerning this subject appeared, A.C. Zaanen (1983), H.U. Schwarz (1984), and C.D. Aliprantis and O. Burkinshaw (1985) |
Beschreibung: | 1 Online-Ressource (XV, 395p) |
ISBN: | 9783642767241 9783540542018 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-642-76724-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422991 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1991 |||| o||u| ||||||eng d | ||
020 | |a 9783642767241 |c Online |9 978-3-642-76724-1 | ||
020 | |a 9783540542018 |c Print |9 978-3-540-54201-8 | ||
024 | 7 | |a 10.1007/978-3-642-76724-1 |2 doi | |
035 | |a (OCoLC)879624063 | ||
035 | |a (DE-599)BVBBV042422991 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.8 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Meyer-Nieberg, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Banach Lattices |c by Peter Meyer-Nieberg |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1991 | |
300 | |a 1 Online-Ressource (XV, 395p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a This book is mainly concerned with the theory of Banach lattices and with linear operators defined on, or with values in Banach lattices. Moreover we will always consider more general classes of Riesz spaces so long as this does not involve more complicated constructions or proofs. In particular, we will not treat any phenomena which occur only in the non-Banach lattice situation. Riesz spaces, also called vector lattices, K-lineals, are linear lattices which were first considered by F. Riesz, 1. Kantorovic, and H. Freudenthal. Subse quently other important contributions came from the Soviet Union (L.V. Kan torovic, A.J. Judin, A.G. Pinsker, and B.Z. Vulikh), Japan (H. Nakano, T. Oga sawara, and K. Yosida), and the United States (G. Birkhoff, H.F. Bohnenblust, S. Kakutani, and M.l\f. Stone). In the last twenty-five years the theory rapidly increased. Important con tributions came from the Dutch school (W.A.J. Luxemburg, A.C. Zaanen) and the Tiibinger school (lI.lI. Schaefer). In the middle seventies the research on this subject was essentially influenced by the books of H.H. Schaefer (1974) and W.A.J. Luxemburg and A.C. Zaanen (1971). More recently other impor tant books concerning this subject appeared, A.C. Zaanen (1983), H.U. Schwarz (1984), and C.D. Aliprantis and O. Burkinshaw (1985) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Verbandsalgebra |0 (DE-588)4143976-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riesz-Raum |0 (DE-588)4178139-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Verband |0 (DE-588)4273753-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Verbandsalgebra |0 (DE-588)4143976-4 |D s |
689 | 0 | 1 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Banach-Verband |0 (DE-588)4273753-9 |D s |
689 | 1 | 1 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Riesz-Raum |0 (DE-588)4178139-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-76724-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858408 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098117054464 |
---|---|
any_adam_object | |
author | Meyer-Nieberg, Peter |
author_facet | Meyer-Nieberg, Peter |
author_role | aut |
author_sort | Meyer-Nieberg, Peter |
author_variant | p m n pmn |
building | Verbundindex |
bvnumber | BV042422991 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624063 (DE-599)BVBBV042422991 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-76724-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03427nmm a2200577zc 4500</leader><controlfield tag="001">BV042422991</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642767241</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-76724-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540542018</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-54201-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-76724-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422991</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meyer-Nieberg, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Banach Lattices</subfield><subfield code="c">by Peter Meyer-Nieberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 395p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is mainly concerned with the theory of Banach lattices and with linear operators defined on, or with values in Banach lattices. Moreover we will always consider more general classes of Riesz spaces so long as this does not involve more complicated constructions or proofs. In particular, we will not treat any phenomena which occur only in the non-Banach lattice situation. Riesz spaces, also called vector lattices, K-lineals, are linear lattices which were first considered by F. Riesz, 1. Kantorovic, and H. Freudenthal. Subse quently other important contributions came from the Soviet Union (L.V. Kan torovic, A.J. Judin, A.G. Pinsker, and B.Z. Vulikh), Japan (H. Nakano, T. Oga sawara, and K. Yosida), and the United States (G. Birkhoff, H.F. Bohnenblust, S. Kakutani, and M.l\f. Stone). In the last twenty-five years the theory rapidly increased. Important con tributions came from the Dutch school (W.A.J. Luxemburg, A.C. Zaanen) and the Tiibinger school (lI.lI. Schaefer). In the middle seventies the research on this subject was essentially influenced by the books of H.H. Schaefer (1974) and W.A.J. Luxemburg and A.C. Zaanen (1971). More recently other impor tant books concerning this subject appeared, A.C. Zaanen (1983), H.U. Schwarz (1984), and C.D. Aliprantis and O. Burkinshaw (1985)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Verbandsalgebra</subfield><subfield code="0">(DE-588)4143976-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riesz-Raum</subfield><subfield code="0">(DE-588)4178139-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Verband</subfield><subfield code="0">(DE-588)4273753-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Verbandsalgebra</subfield><subfield code="0">(DE-588)4143976-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Banach-Verband</subfield><subfield code="0">(DE-588)4273753-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Riesz-Raum</subfield><subfield code="0">(DE-588)4178139-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-76724-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858408</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422991 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642767241 9783540542018 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858408 |
oclc_num | 879624063 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 395p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Meyer-Nieberg, Peter Verfasser aut Banach Lattices by Peter Meyer-Nieberg Berlin, Heidelberg Springer Berlin Heidelberg 1991 1 Online-Ressource (XV, 395p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 This book is mainly concerned with the theory of Banach lattices and with linear operators defined on, or with values in Banach lattices. Moreover we will always consider more general classes of Riesz spaces so long as this does not involve more complicated constructions or proofs. In particular, we will not treat any phenomena which occur only in the non-Banach lattice situation. Riesz spaces, also called vector lattices, K-lineals, are linear lattices which were first considered by F. Riesz, 1. Kantorovic, and H. Freudenthal. Subse quently other important contributions came from the Soviet Union (L.V. Kan torovic, A.J. Judin, A.G. Pinsker, and B.Z. Vulikh), Japan (H. Nakano, T. Oga sawara, and K. Yosida), and the United States (G. Birkhoff, H.F. Bohnenblust, S. Kakutani, and M.l\f. Stone). In the last twenty-five years the theory rapidly increased. Important con tributions came from the Dutch school (W.A.J. Luxemburg, A.C. Zaanen) and the Tiibinger school (lI.lI. Schaefer). In the middle seventies the research on this subject was essentially influenced by the books of H.H. Schaefer (1974) and W.A.J. Luxemburg and A.C. Zaanen (1971). More recently other impor tant books concerning this subject appeared, A.C. Zaanen (1983), H.U. Schwarz (1984), and C.D. Aliprantis and O. Burkinshaw (1985) Mathematics Real Functions Mathematik Linearer Operator (DE-588)4167721-3 gnd rswk-swf Banach-Verbandsalgebra (DE-588)4143976-4 gnd rswk-swf Riesz-Raum (DE-588)4178139-9 gnd rswk-swf Banach-Verband (DE-588)4273753-9 gnd rswk-swf Banach-Verbandsalgebra (DE-588)4143976-4 s Linearer Operator (DE-588)4167721-3 s 1\p DE-604 Banach-Verband (DE-588)4273753-9 s 2\p DE-604 Riesz-Raum (DE-588)4178139-9 s 3\p DE-604 https://doi.org/10.1007/978-3-642-76724-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Meyer-Nieberg, Peter Banach Lattices Mathematics Real Functions Mathematik Linearer Operator (DE-588)4167721-3 gnd Banach-Verbandsalgebra (DE-588)4143976-4 gnd Riesz-Raum (DE-588)4178139-9 gnd Banach-Verband (DE-588)4273753-9 gnd |
subject_GND | (DE-588)4167721-3 (DE-588)4143976-4 (DE-588)4178139-9 (DE-588)4273753-9 |
title | Banach Lattices |
title_auth | Banach Lattices |
title_exact_search | Banach Lattices |
title_full | Banach Lattices by Peter Meyer-Nieberg |
title_fullStr | Banach Lattices by Peter Meyer-Nieberg |
title_full_unstemmed | Banach Lattices by Peter Meyer-Nieberg |
title_short | Banach Lattices |
title_sort | banach lattices |
topic | Mathematics Real Functions Mathematik Linearer Operator (DE-588)4167721-3 gnd Banach-Verbandsalgebra (DE-588)4143976-4 gnd Riesz-Raum (DE-588)4178139-9 gnd Banach-Verband (DE-588)4273753-9 gnd |
topic_facet | Mathematics Real Functions Mathematik Linearer Operator Banach-Verbandsalgebra Riesz-Raum Banach-Verband |
url | https://doi.org/10.1007/978-3-642-76724-1 |
work_keys_str_mv | AT meyerniebergpeter banachlattices |