KAM Theory and Semiclassical Approximations to Eigenfunctions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics
24 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of this Ergebnisse-Bericht, Lazutkin succeeds in giving a complete and self-contained exposition of the subject, including a part on Hamiltonian dynamics. The main results concern the existence and persistence of KAM theory, their smooth dependence on the frequency, and the estimate of the measure of the set filled by KAM theory. The second part is devoted to the construction of the semiclassical asymptotics to the eigenfunctions of the generalized Schrödinger operator. The main result is the asymptotic formulae for eigenfunctions and eigenvalues, using Maslov's operator, for the set of eigenvalues of positive density in the set of all eigenvalues. An addendum by Prof. A.I. Shnirelman treats eigenfunctions corresponding to the "chaotic component" of the phase space |
Beschreibung: | 1 Online-Ressource (IX, 387p. 66 illus) |
ISBN: | 9783642762475 9783642762499 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-76247-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422988 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783642762475 |c Online |9 978-3-642-76247-5 | ||
020 | |a 9783642762499 |c Print |9 978-3-642-76249-9 | ||
024 | 7 | |a 10.1007/978-3-642-76247-5 |2 doi | |
035 | |a (OCoLC)1184445601 | ||
035 | |a (DE-599)BVBBV042422988 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lazutkin, Vladimir F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a KAM Theory and Semiclassical Approximations to Eigenfunctions |c by Vladimir F. Lazutkin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (IX, 387p. 66 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics |v 24 |x 0071-1136 | |
500 | |a It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of this Ergebnisse-Bericht, Lazutkin succeeds in giving a complete and self-contained exposition of the subject, including a part on Hamiltonian dynamics. The main results concern the existence and persistence of KAM theory, their smooth dependence on the frequency, and the estimate of the measure of the set filled by KAM theory. The second part is devoted to the construction of the semiclassical asymptotics to the eigenfunctions of the generalized Schrödinger operator. The main result is the asymptotic formulae for eigenfunctions and eigenvalues, using Maslov's operator, for the set of eigenvalues of positive density in the set of all eigenvalues. An addendum by Prof. A.I. Shnirelman treats eigenfunctions corresponding to the "chaotic component" of the phase space | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Analysis | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a KAM-Theorie |0 (DE-588)4329269-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearer Differentialoperator |0 (DE-588)4167717-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Operator |0 (DE-588)4072278-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenfunktion |0 (DE-588)4151167-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenwert |0 (DE-588)4151200-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Linearer Differentialoperator |0 (DE-588)4167717-1 |D s |
689 | 0 | 1 | |a Eigenwert |0 (DE-588)4151200-5 |D s |
689 | 0 | 2 | |a Eigenfunktion |0 (DE-588)4151167-0 |D s |
689 | 0 | 3 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 1 | 1 | |a Eigenfunktion |0 (DE-588)4151167-0 |D s |
689 | 1 | 2 | |a Quasiklassische Näherung |0 (DE-588)4296820-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 2 | 1 | |a Eigenfunktion |0 (DE-588)4151167-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a KAM-Theorie |0 (DE-588)4329269-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-76247-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858405 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098106568704 |
---|---|
any_adam_object | |
author | Lazutkin, Vladimir F. |
author_facet | Lazutkin, Vladimir F. |
author_role | aut |
author_sort | Lazutkin, Vladimir F. |
author_variant | v f l vf vfl |
building | Verbundindex |
bvnumber | BV042422988 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184445601 (DE-599)BVBBV042422988 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-76247-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04327nmm a2200769zcb4500</leader><controlfield tag="001">BV042422988</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642762475</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-76247-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642762499</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-76249-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-76247-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184445601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422988</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lazutkin, Vladimir F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">KAM Theory and Semiclassical Approximations to Eigenfunctions</subfield><subfield code="c">by Vladimir F. Lazutkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 387p. 66 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics</subfield><subfield code="v">24</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of this Ergebnisse-Bericht, Lazutkin succeeds in giving a complete and self-contained exposition of the subject, including a part on Hamiltonian dynamics. The main results concern the existence and persistence of KAM theory, their smooth dependence on the frequency, and the estimate of the measure of the set filled by KAM theory. The second part is devoted to the construction of the semiclassical asymptotics to the eigenfunctions of the generalized Schrödinger operator. The main result is the asymptotic formulae for eigenfunctions and eigenvalues, using Maslov's operator, for the set of eigenvalues of positive density in the set of all eigenvalues. An addendum by Prof. A.I. Shnirelman treats eigenfunctions corresponding to the "chaotic component" of the phase space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">KAM-Theorie</subfield><subfield code="0">(DE-588)4329269-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Differentialoperator</subfield><subfield code="0">(DE-588)4167717-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Linearer Differentialoperator</subfield><subfield code="0">(DE-588)4167717-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eigenwert</subfield><subfield code="0">(DE-588)4151200-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Quasiklassische Näherung</subfield><subfield code="0">(DE-588)4296820-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">KAM-Theorie</subfield><subfield code="0">(DE-588)4329269-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-76247-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858405</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422988 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642762475 9783642762499 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858405 |
oclc_num | 1184445601 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 387p. 66 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics |
spelling | Lazutkin, Vladimir F. Verfasser aut KAM Theory and Semiclassical Approximations to Eigenfunctions by Vladimir F. Lazutkin Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (IX, 387p. 66 illus) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics 24 0071-1136 It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of this Ergebnisse-Bericht, Lazutkin succeeds in giving a complete and self-contained exposition of the subject, including a part on Hamiltonian dynamics. The main results concern the existence and persistence of KAM theory, their smooth dependence on the frequency, and the estimate of the measure of the set filled by KAM theory. The second part is devoted to the construction of the semiclassical asymptotics to the eigenfunctions of the generalized Schrödinger operator. The main result is the asymptotic formulae for eigenfunctions and eigenvalues, using Maslov's operator, for the set of eigenvalues of positive density in the set of all eigenvalues. An addendum by Prof. A.I. Shnirelman treats eigenfunctions corresponding to the "chaotic component" of the phase space Mathematics Global analysis (Mathematics) Quantum theory Analysis Quantum Information Technology, Spintronics Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung (DE-588)4296820-3 gnd rswk-swf KAM-Theorie (DE-588)4329269-0 gnd rswk-swf Linearer Differentialoperator (DE-588)4167717-1 gnd rswk-swf Asymptotik (DE-588)4126634-1 gnd rswk-swf Hamilton-Operator (DE-588)4072278-8 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Eigenfunktion (DE-588)4151167-0 gnd rswk-swf Eigenwert (DE-588)4151200-5 gnd rswk-swf Linearer Differentialoperator (DE-588)4167717-1 s Eigenwert (DE-588)4151200-5 s Eigenfunktion (DE-588)4151167-0 s Asymptotik (DE-588)4126634-1 s 1\p DE-604 Hamiltonsches System (DE-588)4139943-2 s Quasiklassische Näherung (DE-588)4296820-3 s 2\p DE-604 Hamilton-Operator (DE-588)4072278-8 s 3\p DE-604 KAM-Theorie (DE-588)4329269-0 s 4\p DE-604 https://doi.org/10.1007/978-3-642-76247-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lazutkin, Vladimir F. KAM Theory and Semiclassical Approximations to Eigenfunctions Mathematics Global analysis (Mathematics) Quantum theory Analysis Quantum Information Technology, Spintronics Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung (DE-588)4296820-3 gnd KAM-Theorie (DE-588)4329269-0 gnd Linearer Differentialoperator (DE-588)4167717-1 gnd Asymptotik (DE-588)4126634-1 gnd Hamilton-Operator (DE-588)4072278-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd Eigenfunktion (DE-588)4151167-0 gnd Eigenwert (DE-588)4151200-5 gnd |
subject_GND | (DE-588)4296820-3 (DE-588)4329269-0 (DE-588)4167717-1 (DE-588)4126634-1 (DE-588)4072278-8 (DE-588)4139943-2 (DE-588)4151167-0 (DE-588)4151200-5 |
title | KAM Theory and Semiclassical Approximations to Eigenfunctions |
title_auth | KAM Theory and Semiclassical Approximations to Eigenfunctions |
title_exact_search | KAM Theory and Semiclassical Approximations to Eigenfunctions |
title_full | KAM Theory and Semiclassical Approximations to Eigenfunctions by Vladimir F. Lazutkin |
title_fullStr | KAM Theory and Semiclassical Approximations to Eigenfunctions by Vladimir F. Lazutkin |
title_full_unstemmed | KAM Theory and Semiclassical Approximations to Eigenfunctions by Vladimir F. Lazutkin |
title_short | KAM Theory and Semiclassical Approximations to Eigenfunctions |
title_sort | kam theory and semiclassical approximations to eigenfunctions |
topic | Mathematics Global analysis (Mathematics) Quantum theory Analysis Quantum Information Technology, Spintronics Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung (DE-588)4296820-3 gnd KAM-Theorie (DE-588)4329269-0 gnd Linearer Differentialoperator (DE-588)4167717-1 gnd Asymptotik (DE-588)4126634-1 gnd Hamilton-Operator (DE-588)4072278-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd Eigenfunktion (DE-588)4151167-0 gnd Eigenwert (DE-588)4151200-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Quantum theory Analysis Quantum Information Technology, Spintronics Quantum Physics Mathematik Quantentheorie Quasiklassische Näherung KAM-Theorie Linearer Differentialoperator Asymptotik Hamilton-Operator Hamiltonsches System Eigenfunktion Eigenwert |
url | https://doi.org/10.1007/978-3-642-76247-5 |
work_keys_str_mv | AT lazutkinvladimirf kamtheoryandsemiclassicalapproximationstoeigenfunctions |