State Space Modeling of Time Series:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1990
|
Ausgabe: | Second, Revised and Enlarged Edition |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this book, the author adopts a state space approach to time series modeling to provide a new, computer-oriented method for building models for vector-valued time series. This second edition has been completely reorganized and rewritten. Background material leading up to the two types of estimators of the state space models is collected and presented coherently in four consecutive chapters. New, fuller descriptions are given of state space models for autoregressive models commonly used in the econometric and statistical literature. Backward innovation models are newly introduced in this edition in addition to the forward innovation models, and both are used to construct instrumental variable estimators for the model matrices. Further new items in this edition include statistical properties of the two types of estimators, more details on multiplier analysis and identification of structural models using estimated models, incorporation of exogenous signals and choice of model size. A whole new chapter is devoted to modeling of integrated, nearly integrated and co-integrated time series |
Beschreibung: | 1 Online-Ressource (XVII, 323 p) |
ISBN: | 9783642758836 9783540528708 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-642-75883-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422982 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783642758836 |c Online |9 978-3-642-75883-6 | ||
020 | |a 9783540528708 |c Print |9 978-3-540-52870-8 | ||
024 | 7 | |a 10.1007/978-3-642-75883-6 |2 doi | |
035 | |a (OCoLC)1165545820 | ||
035 | |a (DE-599)BVBBV042422982 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 330.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Aoki, Masanao |e Verfasser |4 aut | |
245 | 1 | 0 | |a State Space Modeling of Time Series |c by Masanao Aoki |
250 | |a Second, Revised and Enlarged Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1990 | |
300 | |a 1 Online-Ressource (XVII, 323 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a In this book, the author adopts a state space approach to time series modeling to provide a new, computer-oriented method for building models for vector-valued time series. This second edition has been completely reorganized and rewritten. Background material leading up to the two types of estimators of the state space models is collected and presented coherently in four consecutive chapters. New, fuller descriptions are given of state space models for autoregressive models commonly used in the econometric and statistical literature. Backward innovation models are newly introduced in this edition in addition to the forward innovation models, and both are used to construct instrumental variable estimators for the model matrices. Further new items in this edition include statistical properties of the two types of estimators, more details on multiplier analysis and identification of structural models using estimated models, incorporation of exogenous signals and choice of model size. A whole new chapter is devoted to modeling of integrated, nearly integrated and co-integrated time series | ||
650 | 4 | |a Economics | |
650 | 4 | |a Statistics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Operations research | |
650 | 4 | |a Economics/Management Science | |
650 | 4 | |a Economic Theory | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Management | |
650 | 4 | |a Statistik | |
650 | 4 | |a Wirtschaft | |
650 | 0 | 7 | |a Modell |0 (DE-588)4039798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitreihe |0 (DE-588)4127298-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zustandsraum |0 (DE-588)4132647-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zustandsraum |0 (DE-588)4132647-7 |D s |
689 | 0 | 1 | |a Zeitreihe |0 (DE-588)4127298-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |D s |
689 | 1 | 1 | |a Modell |0 (DE-588)4039798-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-75883-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858399 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098107617280 |
---|---|
any_adam_object | |
author | Aoki, Masanao |
author_facet | Aoki, Masanao |
author_role | aut |
author_sort | Aoki, Masanao |
author_variant | m a ma |
building | Verbundindex |
bvnumber | BV042422982 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165545820 (DE-599)BVBBV042422982 |
dewey-full | 330.1 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.1 |
dewey-search | 330.1 |
dewey-sort | 3330.1 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-75883-6 |
edition | Second, Revised and Enlarged Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03649nmm a2200709zc 4500</leader><controlfield tag="001">BV042422982</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642758836</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-75883-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540528708</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-52870-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-75883-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165545820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422982</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aoki, Masanao</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">State Space Modeling of Time Series</subfield><subfield code="c">by Masanao Aoki</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second, Revised and Enlarged Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 323 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book, the author adopts a state space approach to time series modeling to provide a new, computer-oriented method for building models for vector-valued time series. This second edition has been completely reorganized and rewritten. Background material leading up to the two types of estimators of the state space models is collected and presented coherently in four consecutive chapters. New, fuller descriptions are given of state space models for autoregressive models commonly used in the econometric and statistical literature. Backward innovation models are newly introduced in this edition in addition to the forward innovation models, and both are used to construct instrumental variable estimators for the model matrices. Further new items in this edition include statistical properties of the two types of estimators, more details on multiplier analysis and identification of structural models using estimated models, incorporation of exogenous signals and choice of model size. A whole new chapter is devoted to modeling of integrated, nearly integrated and co-integrated time series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics/Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihe</subfield><subfield code="0">(DE-588)4127298-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zustandsraum</subfield><subfield code="0">(DE-588)4132647-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zustandsraum</subfield><subfield code="0">(DE-588)4132647-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitreihe</subfield><subfield code="0">(DE-588)4127298-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Modell</subfield><subfield code="0">(DE-588)4039798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-75883-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858399</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422982 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642758836 9783540528708 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858399 |
oclc_num | 1165545820 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 323 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Aoki, Masanao Verfasser aut State Space Modeling of Time Series by Masanao Aoki Second, Revised and Enlarged Edition Berlin, Heidelberg Springer Berlin Heidelberg 1990 1 Online-Ressource (XVII, 323 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 In this book, the author adopts a state space approach to time series modeling to provide a new, computer-oriented method for building models for vector-valued time series. This second edition has been completely reorganized and rewritten. Background material leading up to the two types of estimators of the state space models is collected and presented coherently in four consecutive chapters. New, fuller descriptions are given of state space models for autoregressive models commonly used in the econometric and statistical literature. Backward innovation models are newly introduced in this edition in addition to the forward innovation models, and both are used to construct instrumental variable estimators for the model matrices. Further new items in this edition include statistical properties of the two types of estimators, more details on multiplier analysis and identification of structural models using estimated models, incorporation of exogenous signals and choice of model size. A whole new chapter is devoted to modeling of integrated, nearly integrated and co-integrated time series Economics Statistics Engineering mathematics Operations research Economics/Management Science Economic Theory Operation Research/Decision Theory Statistics, general Appl.Mathematics/Computational Methods of Engineering Management Statistik Wirtschaft Modell (DE-588)4039798-1 gnd rswk-swf Zeitreihe (DE-588)4127298-5 gnd rswk-swf Zustandsraum (DE-588)4132647-7 gnd rswk-swf Zeitreihenanalyse (DE-588)4067486-1 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Zustandsraum (DE-588)4132647-7 s Zeitreihe (DE-588)4127298-5 s 1\p DE-604 Zeitreihenanalyse (DE-588)4067486-1 s Modell (DE-588)4039798-1 s 2\p DE-604 Datenanalyse (DE-588)4123037-1 s 3\p DE-604 https://doi.org/10.1007/978-3-642-75883-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aoki, Masanao State Space Modeling of Time Series Economics Statistics Engineering mathematics Operations research Economics/Management Science Economic Theory Operation Research/Decision Theory Statistics, general Appl.Mathematics/Computational Methods of Engineering Management Statistik Wirtschaft Modell (DE-588)4039798-1 gnd Zeitreihe (DE-588)4127298-5 gnd Zustandsraum (DE-588)4132647-7 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd Datenanalyse (DE-588)4123037-1 gnd |
subject_GND | (DE-588)4039798-1 (DE-588)4127298-5 (DE-588)4132647-7 (DE-588)4067486-1 (DE-588)4123037-1 |
title | State Space Modeling of Time Series |
title_auth | State Space Modeling of Time Series |
title_exact_search | State Space Modeling of Time Series |
title_full | State Space Modeling of Time Series by Masanao Aoki |
title_fullStr | State Space Modeling of Time Series by Masanao Aoki |
title_full_unstemmed | State Space Modeling of Time Series by Masanao Aoki |
title_short | State Space Modeling of Time Series |
title_sort | state space modeling of time series |
topic | Economics Statistics Engineering mathematics Operations research Economics/Management Science Economic Theory Operation Research/Decision Theory Statistics, general Appl.Mathematics/Computational Methods of Engineering Management Statistik Wirtschaft Modell (DE-588)4039798-1 gnd Zeitreihe (DE-588)4127298-5 gnd Zustandsraum (DE-588)4132647-7 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd Datenanalyse (DE-588)4123037-1 gnd |
topic_facet | Economics Statistics Engineering mathematics Operations research Economics/Management Science Economic Theory Operation Research/Decision Theory Statistics, general Appl.Mathematics/Computational Methods of Engineering Management Statistik Wirtschaft Modell Zeitreihe Zustandsraum Zeitreihenanalyse Datenanalyse |
url | https://doi.org/10.1007/978-3-642-75883-6 |
work_keys_str_mv | AT aokimasanao statespacemodelingoftimeseries |