Around Burnside:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1990
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics
20 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area |
Beschreibung: | 1 Online-Ressource (XII, 222 p) |
ISBN: | 9783642743245 9783642743269 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-74324-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422969 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783642743245 |c Online |9 978-3-642-74324-5 | ||
020 | |a 9783642743269 |c Print |9 978-3-642-74326-9 | ||
024 | 7 | |a 10.1007/978-3-642-74324-5 |2 doi | |
035 | |a (OCoLC)1184500782 | ||
035 | |a (DE-599)BVBBV042422969 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kostrikin, A. I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Around Burnside |c by A. I. Kostrikin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1990 | |
300 | |a 1 Online-Ressource (XII, 222 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics |v 20 |x 0071-1136 | |
500 | |a Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Beschränkte Burnside-Vermutung |0 (DE-588)4246777-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Burnside-Vermutung |0 (DE-588)4147029-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Beschränkte Burnside-Vermutung |0 (DE-588)4246777-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Burnside-Vermutung |0 (DE-588)4147029-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-74324-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858386 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098069868544 |
---|---|
any_adam_object | |
author | Kostrikin, A. I. |
author_facet | Kostrikin, A. I. |
author_role | aut |
author_sort | Kostrikin, A. I. |
author_variant | a i k ai aik |
building | Verbundindex |
bvnumber | BV042422969 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184500782 (DE-599)BVBBV042422969 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-74324-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03440nmm a2200541zcb4500</leader><controlfield tag="001">BV042422969</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642743245</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-74324-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642743269</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-74326-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-74324-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184500782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kostrikin, A. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Around Burnside</subfield><subfield code="c">by A. I. Kostrikin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 222 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics</subfield><subfield code="v">20</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beschränkte Burnside-Vermutung</subfield><subfield code="0">(DE-588)4246777-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Burnside-Vermutung</subfield><subfield code="0">(DE-588)4147029-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beschränkte Burnside-Vermutung</subfield><subfield code="0">(DE-588)4246777-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Burnside-Vermutung</subfield><subfield code="0">(DE-588)4147029-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-74324-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858386</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422969 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642743245 9783642743269 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858386 |
oclc_num | 1184500782 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 222 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics |
spelling | Kostrikin, A. I. Verfasser aut Around Burnside by A. I. Kostrikin Berlin, Heidelberg Springer Berlin Heidelberg 1990 1 Online-Ressource (XII, 222 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics 20 0071-1136 Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Beschränkte Burnside-Vermutung (DE-588)4246777-9 gnd rswk-swf Burnside-Vermutung (DE-588)4147029-1 gnd rswk-swf Beschränkte Burnside-Vermutung (DE-588)4246777-9 s 1\p DE-604 Burnside-Vermutung (DE-588)4147029-1 s 2\p DE-604 https://doi.org/10.1007/978-3-642-74324-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kostrikin, A. I. Around Burnside Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Beschränkte Burnside-Vermutung (DE-588)4246777-9 gnd Burnside-Vermutung (DE-588)4147029-1 gnd |
subject_GND | (DE-588)4246777-9 (DE-588)4147029-1 |
title | Around Burnside |
title_auth | Around Burnside |
title_exact_search | Around Burnside |
title_full | Around Burnside by A. I. Kostrikin |
title_fullStr | Around Burnside by A. I. Kostrikin |
title_full_unstemmed | Around Burnside by A. I. Kostrikin |
title_short | Around Burnside |
title_sort | around burnside |
topic | Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Beschränkte Burnside-Vermutung (DE-588)4246777-9 gnd Burnside-Vermutung (DE-588)4147029-1 gnd |
topic_facet | Mathematics Group theory Topological Groups Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Beschränkte Burnside-Vermutung Burnside-Vermutung |
url | https://doi.org/10.1007/978-3-642-74324-5 |
work_keys_str_mv | AT kostrikinai aroundburnside |