Partial Differential Equations: An Introduction to a General Theory of Linear Boundary Value Problems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1987
|
Schriftenreihe: | Springer Series in Soviet Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Let me begin by explaining the meaning of the title of this book. In essence, the book studies boundary value problems for linear partial differential equations in a finite domain in n-dimensional Euclidean space. The problem that is investigated is the question of the dependence of the nature of the solvability of a given equation on the way in which the boundary conditions are chosen, i.e. on the supplementary requirements which the solution is to satisfy on specified parts of the boundary. The branch of mathematical analysis dealing with the study of boundary value problems for partial differential equations is often called mathematical physics. Classical courses in this subject usually consider quite restricted classes of equations, for which the problems have an immediate physical context, or generalizations of such problems. With the expanding domain of application of mathematical methods at the present time, there often arise problems connected with the study of partial differential equations that do not belong to any of the classical types. The elucidation of the correct formulation of these problems and the study of the specific properties of the solutions of similar equations are closely related to the study of questions of a general nature |
Beschreibung: | 1 Online-Ressource (XII, 165p) |
ISBN: | 9783642713347 9783642713361 |
ISSN: | 0939-1169 |
DOI: | 10.1007/978-3-642-71334-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422957 | ||
003 | DE-604 | ||
005 | 20210315 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783642713347 |c Online |9 978-3-642-71334-7 | ||
020 | |a 9783642713361 |c Print |9 978-3-642-71336-1 | ||
024 | 7 | |a 10.1007/978-3-642-71334-7 |2 doi | |
035 | |a (OCoLC)863792971 | ||
035 | |a (DE-599)BVBBV042422957 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dezin, Aleksei A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Partial Differential Equations |b An Introduction to a General Theory of Linear Boundary Value Problems |c by Aleksei A. Dezin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1987 | |
300 | |a 1 Online-Ressource (XII, 165p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Soviet Mathematics |x 0939-1169 | |
500 | |a Let me begin by explaining the meaning of the title of this book. In essence, the book studies boundary value problems for linear partial differential equations in a finite domain in n-dimensional Euclidean space. The problem that is investigated is the question of the dependence of the nature of the solvability of a given equation on the way in which the boundary conditions are chosen, i.e. on the supplementary requirements which the solution is to satisfy on specified parts of the boundary. The branch of mathematical analysis dealing with the study of boundary value problems for partial differential equations is often called mathematical physics. Classical courses in this subject usually consider quite restricted classes of equations, for which the problems have an immediate physical context, or generalizations of such problems. With the expanding domain of application of mathematical methods at the present time, there often arise problems connected with the study of partial differential equations that do not belong to any of the classical types. The elucidation of the correct formulation of these problems and the study of the specific properties of the solutions of similar equations are closely related to the study of questions of a general nature | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-642-71336-1 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-71334-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858374 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098056237056 |
---|---|
any_adam_object | |
author | Dezin, Aleksei A. |
author_facet | Dezin, Aleksei A. |
author_role | aut |
author_sort | Dezin, Aleksei A. |
author_variant | a a d aa aad |
building | Verbundindex |
bvnumber | BV042422957 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863792971 (DE-599)BVBBV042422957 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-71334-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03375nmm a2200541zc 4500</leader><controlfield tag="001">BV042422957</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642713347</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-71334-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642713361</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-71336-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-71334-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863792971</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422957</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dezin, Aleksei A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial Differential Equations</subfield><subfield code="b">An Introduction to a General Theory of Linear Boundary Value Problems</subfield><subfield code="c">by Aleksei A. Dezin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 165p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Soviet Mathematics</subfield><subfield code="x">0939-1169</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Let me begin by explaining the meaning of the title of this book. In essence, the book studies boundary value problems for linear partial differential equations in a finite domain in n-dimensional Euclidean space. The problem that is investigated is the question of the dependence of the nature of the solvability of a given equation on the way in which the boundary conditions are chosen, i.e. on the supplementary requirements which the solution is to satisfy on specified parts of the boundary. The branch of mathematical analysis dealing with the study of boundary value problems for partial differential equations is often called mathematical physics. Classical courses in this subject usually consider quite restricted classes of equations, for which the problems have an immediate physical context, or generalizations of such problems. With the expanding domain of application of mathematical methods at the present time, there often arise problems connected with the study of partial differential equations that do not belong to any of the classical types. The elucidation of the correct formulation of these problems and the study of the specific properties of the solutions of similar equations are closely related to the study of questions of a general nature</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-642-71336-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-71334-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858374</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422957 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642713347 9783642713361 |
issn | 0939-1169 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858374 |
oclc_num | 863792971 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 165p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Soviet Mathematics |
spelling | Dezin, Aleksei A. Verfasser aut Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems by Aleksei A. Dezin Berlin, Heidelberg Springer Berlin Heidelberg 1987 1 Online-Ressource (XII, 165p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Soviet Mathematics 0939-1169 Let me begin by explaining the meaning of the title of this book. In essence, the book studies boundary value problems for linear partial differential equations in a finite domain in n-dimensional Euclidean space. The problem that is investigated is the question of the dependence of the nature of the solvability of a given equation on the way in which the boundary conditions are chosen, i.e. on the supplementary requirements which the solution is to satisfy on specified parts of the boundary. The branch of mathematical analysis dealing with the study of boundary value problems for partial differential equations is often called mathematical physics. Classical courses in this subject usually consider quite restricted classes of equations, for which the problems have an immediate physical context, or generalizations of such problems. With the expanding domain of application of mathematical methods at the present time, there often arise problems connected with the study of partial differential equations that do not belong to any of the classical types. The elucidation of the correct formulation of these problems and the study of the specific properties of the solutions of similar equations are closely related to the study of questions of a general nature Mathematics Global analysis (Mathematics) Analysis Mathematik Randwertproblem (DE-588)4048395-2 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd rswk-swf Lineare partielle Differentialgleichung (DE-588)4167708-0 s Randwertproblem (DE-588)4048395-2 s 1\p DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 978-3-642-71336-1 https://doi.org/10.1007/978-3-642-71334-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dezin, Aleksei A. Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems Mathematics Global analysis (Mathematics) Analysis Mathematik Randwertproblem (DE-588)4048395-2 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd |
subject_GND | (DE-588)4048395-2 (DE-588)4044779-0 (DE-588)4167708-0 |
title | Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems |
title_auth | Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems |
title_exact_search | Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems |
title_full | Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems by Aleksei A. Dezin |
title_fullStr | Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems by Aleksei A. Dezin |
title_full_unstemmed | Partial Differential Equations An Introduction to a General Theory of Linear Boundary Value Problems by Aleksei A. Dezin |
title_short | Partial Differential Equations |
title_sort | partial differential equations an introduction to a general theory of linear boundary value problems |
title_sub | An Introduction to a General Theory of Linear Boundary Value Problems |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Randwertproblem (DE-588)4048395-2 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Randwertproblem Partielle Differentialgleichung Lineare partielle Differentialgleichung |
url | https://doi.org/10.1007/978-3-642-71334-7 |
work_keys_str_mv | AT dezinalekseia partialdifferentialequationsanintroductiontoageneraltheoryoflinearboundaryvalueproblems |