n-Widths in Approximation Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1985
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics
7 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | My original introduction to this subject was through conservations, and ultimate ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Errors in accuracy and omissions are totally my responsibility. I would like to express my appreciation to the SERC of Great Britain and to the Department of Mathematics of the University of Lancaster for the year spent there during which large portions of the manuscript were written, and also to the European Research Office of the U.S. Army for its financial support of my research endeavors. Thanks are also due to Marion Marks who typed portions of the manuscript. Haifa, 1984 Allan Pinkus Table of Contents 1 Chapter I. Introduction . . . . . . . . Chapter II. Basic Properties of n-Widths . 9 1. Properties of d • • • • • • • • • • 9 n 15 2. Existence of Optimal Subspaces for d • n n 17 3. Properties of d • • • • • • 20 4. Properties of b • • • • • • n 5. Inequalities Between n-Widths 22 n 6. Duality Between d and d • • 27 n 7. n-Widths of Mappings of the Unit Ball 29 8. Some Relationships Between dn(T), dn(T) and bn(T) . 32 37 Notes and References . . . . . . . . . . . . . |
Beschreibung: | 1 Online-Ressource (X, 294 p) |
ISBN: | 9783642698941 9783642698965 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-69894-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422947 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9783642698941 |c Online |9 978-3-642-69894-1 | ||
020 | |a 9783642698965 |c Print |9 978-3-642-69896-5 | ||
024 | 7 | |a 10.1007/978-3-642-69894-1 |2 doi | |
035 | |a (OCoLC)863790279 | ||
035 | |a (DE-599)BVBBV042422947 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pinkus, Allan |e Verfasser |4 aut | |
245 | 1 | 0 | |a n-Widths in Approximation Theory |c by Allan Pinkus |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1985 | |
300 | |a 1 Online-Ressource (X, 294 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |v 7 |x 0071-1136 | |
500 | |a My original introduction to this subject was through conservations, and ultimate ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Errors in accuracy and omissions are totally my responsibility. I would like to express my appreciation to the SERC of Great Britain and to the Department of Mathematics of the University of Lancaster for the year spent there during which large portions of the manuscript were written, and also to the European Research Office of the U.S. Army for its financial support of my research endeavors. Thanks are also due to Marion Marks who typed portions of the manuscript. Haifa, 1984 Allan Pinkus Table of Contents 1 Chapter I. Introduction . . . . . . . . Chapter II. Basic Properties of n-Widths . 9 1. Properties of d • • • • • • • • • • 9 n 15 2. Existence of Optimal Subspaces for d • n n 17 3. Properties of d • • • • • • 20 4. Properties of b • • • • • • n 5. Inequalities Between n-Widths 22 n 6. Duality Between d and d • • 27 n 7. n-Widths of Mappings of the Unit Ball 29 8. Some Relationships Between dn(T), dn(T) and bn(T) . 32 37 Notes and References . . . . . . . . . . . . . | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Normierter Raum |0 (DE-588)4127735-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beste Approximation |0 (DE-588)4144932-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a n-Durchmesser |0 (DE-588)4171355-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorraum |0 (DE-588)4130622-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | 1 | |a n-Durchmesser |0 (DE-588)4171355-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 1 | 1 | |a Normierter Raum |0 (DE-588)4127735-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Beste Approximation |0 (DE-588)4144932-0 |D s |
689 | 2 | 1 | |a Vektorraum |0 (DE-588)4130622-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-69894-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858364 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098060431360 |
---|---|
any_adam_object | |
author | Pinkus, Allan |
author_facet | Pinkus, Allan |
author_role | aut |
author_sort | Pinkus, Allan |
author_variant | a p ap |
building | Verbundindex |
bvnumber | BV042422947 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863790279 (DE-599)BVBBV042422947 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-69894-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03930nmm a2200673zcb4500</leader><controlfield tag="001">BV042422947</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642698941</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-69894-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642698965</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-69896-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-69894-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863790279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422947</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pinkus, Allan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">n-Widths in Approximation Theory</subfield><subfield code="c">by Allan Pinkus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 294 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">7</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">My original introduction to this subject was through conservations, and ultimate ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Errors in accuracy and omissions are totally my responsibility. I would like to express my appreciation to the SERC of Great Britain and to the Department of Mathematics of the University of Lancaster for the year spent there during which large portions of the manuscript were written, and also to the European Research Office of the U.S. Army for its financial support of my research endeavors. Thanks are also due to Marion Marks who typed portions of the manuscript. Haifa, 1984 Allan Pinkus Table of Contents 1 Chapter I. Introduction . . . . . . . . Chapter II. Basic Properties of n-Widths . 9 1. Properties of d • • • • • • • • • • 9 n 15 2. Existence of Optimal Subspaces for d • n n 17 3. Properties of d • • • • • • 20 4. Properties of b • • • • • • n 5. Inequalities Between n-Widths 22 n 6. Duality Between d and d • • 27 n 7. n-Widths of Mappings of the Unit Ball 29 8. Some Relationships Between dn(T), dn(T) and bn(T) . 32 37 Notes and References . . . . . . . . . . . . .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Normierter Raum</subfield><subfield code="0">(DE-588)4127735-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">n-Durchmesser</subfield><subfield code="0">(DE-588)4171355-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">n-Durchmesser</subfield><subfield code="0">(DE-588)4171355-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Normierter Raum</subfield><subfield code="0">(DE-588)4127735-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Beste Approximation</subfield><subfield code="0">(DE-588)4144932-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Vektorraum</subfield><subfield code="0">(DE-588)4130622-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-69894-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858364</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422947 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642698941 9783642698965 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858364 |
oclc_num | 863790279 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 294 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |
spelling | Pinkus, Allan Verfasser aut n-Widths in Approximation Theory by Allan Pinkus Berlin, Heidelberg Springer Berlin Heidelberg 1985 1 Online-Ressource (X, 294 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics 7 0071-1136 My original introduction to this subject was through conservations, and ultimate ly joint work with C. A. Micchelli. I am grateful to him and to Profs. C. de Boor, E. W. Cheney, S. D. Fisher and A. A. Melkman who read various portions of the manuscript and whose suggestions were most helpful. Errors in accuracy and omissions are totally my responsibility. I would like to express my appreciation to the SERC of Great Britain and to the Department of Mathematics of the University of Lancaster for the year spent there during which large portions of the manuscript were written, and also to the European Research Office of the U.S. Army for its financial support of my research endeavors. Thanks are also due to Marion Marks who typed portions of the manuscript. Haifa, 1984 Allan Pinkus Table of Contents 1 Chapter I. Introduction . . . . . . . . Chapter II. Basic Properties of n-Widths . 9 1. Properties of d • • • • • • • • • • 9 n 15 2. Existence of Optimal Subspaces for d • n n 17 3. Properties of d • • • • • • 20 4. Properties of b • • • • • • n 5. Inequalities Between n-Widths 22 n 6. Duality Between d and d • • 27 n 7. n-Widths of Mappings of the Unit Ball 29 8. Some Relationships Between dn(T), dn(T) and bn(T) . 32 37 Notes and References . . . . . . . . . . . . . Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Normierter Raum (DE-588)4127735-1 gnd rswk-swf Beste Approximation (DE-588)4144932-0 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf n-Durchmesser (DE-588)4171355-2 gnd rswk-swf Vektorraum (DE-588)4130622-3 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 s n-Durchmesser (DE-588)4171355-2 s 1\p DE-604 Approximation (DE-588)4002498-2 s Normierter Raum (DE-588)4127735-1 s 2\p DE-604 Beste Approximation (DE-588)4144932-0 s Vektorraum (DE-588)4130622-3 s 3\p DE-604 https://doi.org/10.1007/978-3-642-69894-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pinkus, Allan n-Widths in Approximation Theory Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Normierter Raum (DE-588)4127735-1 gnd Beste Approximation (DE-588)4144932-0 gnd Approximation (DE-588)4002498-2 gnd n-Durchmesser (DE-588)4171355-2 gnd Vektorraum (DE-588)4130622-3 gnd Approximationstheorie (DE-588)4120913-8 gnd |
subject_GND | (DE-588)4127735-1 (DE-588)4144932-0 (DE-588)4002498-2 (DE-588)4171355-2 (DE-588)4130622-3 (DE-588)4120913-8 |
title | n-Widths in Approximation Theory |
title_auth | n-Widths in Approximation Theory |
title_exact_search | n-Widths in Approximation Theory |
title_full | n-Widths in Approximation Theory by Allan Pinkus |
title_fullStr | n-Widths in Approximation Theory by Allan Pinkus |
title_full_unstemmed | n-Widths in Approximation Theory by Allan Pinkus |
title_short | n-Widths in Approximation Theory |
title_sort | n widths in approximation theory |
topic | Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Normierter Raum (DE-588)4127735-1 gnd Beste Approximation (DE-588)4144932-0 gnd Approximation (DE-588)4002498-2 gnd n-Durchmesser (DE-588)4171355-2 gnd Vektorraum (DE-588)4130622-3 gnd Approximationstheorie (DE-588)4120913-8 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Systems theory Mathematical optimization Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Analysis Mathematik Normierter Raum Beste Approximation Approximation n-Durchmesser Vektorraum Approximationstheorie |
url | https://doi.org/10.1007/978-3-642-69894-1 |
work_keys_str_mv | AT pinkusallan nwidthsinapproximationtheory |