Finite Groups II:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1982
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
242 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 17):~t? L It CIFDr- ! wei! unsre Weisheit Einfalt ist, From "Lohengrin", Richard Wagner At the time of the appearance of the first volume of this work in 1967, the tempestuous development of finite group theory had already made it virtually impossible to give a complete presentation of the subject in one treatise. The present volume and its successor have therefore the more modest aim of giving descriptions of the recent development of certain important parts of the subject, and even in these parts no attempt at completeness has been made. Chapter VII deals with the representation theory of finite groups in arbitrary fields with particular attention to those of non-zero charac teristic. That part of modular representation theory which is essentially the block theory of complex characters has not been included, as there are already monographs on this subject and others will shortly appear. Instead, we have restricted ourselves to such results as can be obtained by purely module-theoretical means |
Beschreibung: | 1 Online-Ressource (XIV, 534 p) |
ISBN: | 9783642679940 9783642679964 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-642-67994-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422926 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1982 |||| o||u| ||||||eng d | ||
020 | |a 9783642679940 |c Online |9 978-3-642-67994-0 | ||
020 | |a 9783642679964 |c Print |9 978-3-642-67996-4 | ||
024 | 7 | |a 10.1007/978-3-642-67994-0 |2 doi | |
035 | |a (OCoLC)879624431 | ||
035 | |a (DE-599)BVBBV042422926 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Huppert, Bertram |e Verfasser |4 aut | |
245 | 1 | 0 | |a Finite Groups II |c by Bertram Huppert, Norman Blackburn |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1982 | |
300 | |a 1 Online-Ressource (XIV, 534 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 242 |x 0072-7830 | |
500 | |a 17):~t? L It CIFDr- ! wei! unsre Weisheit Einfalt ist, From "Lohengrin", Richard Wagner At the time of the appearance of the first volume of this work in 1967, the tempestuous development of finite group theory had already made it virtually impossible to give a complete presentation of the subject in one treatise. The present volume and its successor have therefore the more modest aim of giving descriptions of the recent development of certain important parts of the subject, and even in these parts no attempt at completeness has been made. Chapter VII deals with the representation theory of finite groups in arbitrary fields with particular attention to those of non-zero charac teristic. That part of modular representation theory which is essentially the block theory of complex characters has not been included, as there are already monographs on this subject and others will shortly appear. Instead, we have restricted ourselves to such results as can be obtained by purely module-theoretical means | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Blackburn, Norman |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-67994-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858343 |
Datensatz im Suchindex
_version_ | 1804153097963962368 |
---|---|
any_adam_object | |
author | Huppert, Bertram |
author_facet | Huppert, Bertram |
author_role | aut |
author_sort | Huppert, Bertram |
author_variant | b h bh |
building | Verbundindex |
bvnumber | BV042422926 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624431 (DE-599)BVBBV042422926 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-67994-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02432nmm a2200421zcb4500</leader><controlfield tag="001">BV042422926</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642679940</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-67994-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642679964</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-67996-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-67994-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624431</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422926</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huppert, Bertram</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Groups II</subfield><subfield code="c">by Bertram Huppert, Norman Blackburn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 534 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">242</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">17):~t? L It CIFDr- ! wei! unsre Weisheit Einfalt ist, From "Lohengrin", Richard Wagner At the time of the appearance of the first volume of this work in 1967, the tempestuous development of finite group theory had already made it virtually impossible to give a complete presentation of the subject in one treatise. The present volume and its successor have therefore the more modest aim of giving descriptions of the recent development of certain important parts of the subject, and even in these parts no attempt at completeness has been made. Chapter VII deals with the representation theory of finite groups in arbitrary fields with particular attention to those of non-zero charac teristic. That part of modular representation theory which is essentially the block theory of complex characters has not been included, as there are already monographs on this subject and others will shortly appear. Instead, we have restricted ourselves to such results as can be obtained by purely module-theoretical means</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blackburn, Norman</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-67994-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858343</subfield></datafield></record></collection> |
id | DE-604.BV042422926 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642679940 9783642679964 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858343 |
oclc_num | 879624431 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 534 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Huppert, Bertram Verfasser aut Finite Groups II by Bertram Huppert, Norman Blackburn Berlin, Heidelberg Springer Berlin Heidelberg 1982 1 Online-Ressource (XIV, 534 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 242 0072-7830 17):~t? L It CIFDr- ! wei! unsre Weisheit Einfalt ist, From "Lohengrin", Richard Wagner At the time of the appearance of the first volume of this work in 1967, the tempestuous development of finite group theory had already made it virtually impossible to give a complete presentation of the subject in one treatise. The present volume and its successor have therefore the more modest aim of giving descriptions of the recent development of certain important parts of the subject, and even in these parts no attempt at completeness has been made. Chapter VII deals with the representation theory of finite groups in arbitrary fields with particular attention to those of non-zero charac teristic. That part of modular representation theory which is essentially the block theory of complex characters has not been included, as there are already monographs on this subject and others will shortly appear. Instead, we have restricted ourselves to such results as can be obtained by purely module-theoretical means Mathematics Group theory Group Theory and Generalizations Mathematik Blackburn, Norman Sonstige oth https://doi.org/10.1007/978-3-642-67994-0 Verlag Volltext |
spellingShingle | Huppert, Bertram Finite Groups II Mathematics Group theory Group Theory and Generalizations Mathematik |
title | Finite Groups II |
title_auth | Finite Groups II |
title_exact_search | Finite Groups II |
title_full | Finite Groups II by Bertram Huppert, Norman Blackburn |
title_fullStr | Finite Groups II by Bertram Huppert, Norman Blackburn |
title_full_unstemmed | Finite Groups II by Bertram Huppert, Norman Blackburn |
title_short | Finite Groups II |
title_sort | finite groups ii |
topic | Mathematics Group theory Group Theory and Generalizations Mathematik |
topic_facet | Mathematics Group theory Group Theory and Generalizations Mathematik |
url | https://doi.org/10.1007/978-3-642-67994-0 |
work_keys_str_mv | AT huppertbertram finitegroupsii AT blackburnnorman finitegroupsii |