Sums of Independent Random Variables:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1975
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
82 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The classic "Limit Distributions for sums of Independent Random Variables" by B. V. Gnedenko and A. N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has developed rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I. A. Ibragimov and Yu. V. Linnik, "Independent and Stationarily Connected Variables", which appeared in 1965, contains an exposition of the contemporary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distributed random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and Kolmogotov deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity |
Beschreibung: | 1 Online-Ressource (X, 348 p) |
ISBN: | 9783642658099 9783642658112 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-65809-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422892 | ||
003 | DE-604 | ||
005 | 20171214 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1975 |||| o||u| ||||||eng d | ||
020 | |a 9783642658099 |c Online |9 978-3-642-65809-9 | ||
020 | |a 9783642658112 |c Print |9 978-3-642-65811-2 | ||
024 | 7 | |a 10.1007/978-3-642-65809-9 |2 doi | |
035 | |a (OCoLC)863788722 | ||
035 | |a (DE-599)BVBBV042422892 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Petrov, Valentin V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sums of Independent Random Variables |c by Valentin V. Petrov |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1975 | |
300 | |a 1 Online-Ressource (X, 348 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 82 |x 0071-1136 | |
500 | |a The classic "Limit Distributions for sums of Independent Random Variables" by B. V. Gnedenko and A. N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has developed rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I. A. Ibragimov and Yu. V. Linnik, "Independent and Stationarily Connected Variables", which appeared in 1965, contains an exposition of the contemporary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distributed random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and Kolmogotov deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufallsvariable |0 (DE-588)4129514-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Summe |0 (DE-588)4193845-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zufallsvariable |0 (DE-588)4129514-6 |D s |
689 | 0 | 1 | |a Summe |0 (DE-588)4193845-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 82 |w (DE-604)BV005871160 |9 82 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-65809-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858309 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097919922176 |
---|---|
any_adam_object | |
author | Petrov, Valentin V. |
author_facet | Petrov, Valentin V. |
author_role | aut |
author_sort | Petrov, Valentin V. |
author_variant | v v p vv vvp |
building | Verbundindex |
bvnumber | BV042422892 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863788722 (DE-599)BVBBV042422892 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-65809-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03505nmm a2200529zcb4500</leader><controlfield tag="001">BV042422892</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1975 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642658099</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-65809-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642658112</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-65811-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-65809-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863788722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422892</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrov, Valentin V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sums of Independent Random Variables</subfield><subfield code="c">by Valentin V. Petrov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1975</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 348 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">82</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The classic "Limit Distributions for sums of Independent Random Variables" by B. V. Gnedenko and A. N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has developed rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I. A. Ibragimov and Yu. V. Linnik, "Independent and Stationarily Connected Variables", which appeared in 1965, contains an exposition of the contemporary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distributed random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and Kolmogotov deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Summe</subfield><subfield code="0">(DE-588)4193845-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zufallsvariable</subfield><subfield code="0">(DE-588)4129514-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Summe</subfield><subfield code="0">(DE-588)4193845-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">82</subfield><subfield code="w">(DE-604)BV005871160</subfield><subfield code="9">82</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-65809-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858309</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422892 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642658099 9783642658112 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858309 |
oclc_num | 863788722 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 348 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1975 |
publishDateSearch | 1975 |
publishDateSort | 1975 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Ergebnisse der Mathematik und ihrer Grenzgebiete |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spelling | Petrov, Valentin V. Verfasser aut Sums of Independent Random Variables by Valentin V. Petrov Berlin, Heidelberg Springer Berlin Heidelberg 1975 1 Online-Ressource (X, 348 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete 82 0071-1136 The classic "Limit Distributions for sums of Independent Random Variables" by B. V. Gnedenko and A. N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has developed rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I. A. Ibragimov and Yu. V. Linnik, "Independent and Stationarily Connected Variables", which appeared in 1965, contains an exposition of the contemporary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distributed random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and Kolmogotov deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Zufallsvariable (DE-588)4129514-6 gnd rswk-swf Summe (DE-588)4193845-8 gnd rswk-swf Zufallsvariable (DE-588)4129514-6 s Summe (DE-588)4193845-8 s 1\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 2\p DE-604 Ergebnisse der Mathematik und ihrer Grenzgebiete 82 (DE-604)BV005871160 82 https://doi.org/10.1007/978-3-642-65809-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Petrov, Valentin V. Sums of Independent Random Variables Ergebnisse der Mathematik und ihrer Grenzgebiete Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Zufallsvariable (DE-588)4129514-6 gnd Summe (DE-588)4193845-8 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4129514-6 (DE-588)4193845-8 |
title | Sums of Independent Random Variables |
title_auth | Sums of Independent Random Variables |
title_exact_search | Sums of Independent Random Variables |
title_full | Sums of Independent Random Variables by Valentin V. Petrov |
title_fullStr | Sums of Independent Random Variables by Valentin V. Petrov |
title_full_unstemmed | Sums of Independent Random Variables by Valentin V. Petrov |
title_short | Sums of Independent Random Variables |
title_sort | sums of independent random variables |
topic | Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Zufallsvariable (DE-588)4129514-6 gnd Summe (DE-588)4193845-8 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung Zufallsvariable Summe |
url | https://doi.org/10.1007/978-3-642-65809-9 |
volume_link | (DE-604)BV005871160 |
work_keys_str_mv | AT petrovvalentinv sumsofindependentrandomvariables |