Invariant Subspaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1973
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
77 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In recent years there has been a large amount of work on invariant subspaces, motivated by interest in the structure of non-self-adjoint of the results have been obtained in operators on Hilbert space. Some the context of certain general studies: the theory of the characteristic operator function, initiated by Livsic; the study of triangular models by Brodskii and co-workers; and the unitary dilation theory of Sz. Nagy and Foia!? Other theorems have proofs and interest independent of any particular structure theory. Since the leading workers in each of the structure theories have written excellent expositions of their work, (cf. Sz.-Nagy-Foia!? [1], Brodskii [1], and Gohberg-Krein [1], [2]), in this book we have concentrated on results independent of these theories. We hope that we have given a reasonably complete survey of such results and suggest that readers consult the above references for additional information. The table of contents indicates the material covered. We have restricted ourselves to operators on separable Hilbert space, in spite of the fact that most of the theorems are valid in all Hilbert spaces and many hold in Banach spaces as well. We felt that this restriction was sensible since it eases the exposition and since the separable-Hilbert space case of each of the theorems is generally the most interesting and potentially the most useful case |
Beschreibung: | 1 Online-Ressource (XII, 222 p) |
ISBN: | 9783642655746 9783642655760 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-65574-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422880 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1973 |||| o||u| ||||||eng d | ||
020 | |a 9783642655746 |c Online |9 978-3-642-65574-6 | ||
020 | |a 9783642655760 |c Print |9 978-3-642-65576-0 | ||
024 | 7 | |a 10.1007/978-3-642-65574-6 |2 doi | |
035 | |a (OCoLC)863788721 | ||
035 | |a (DE-599)BVBBV042422880 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Radjavi, Heydar |e Verfasser |4 aut | |
245 | 1 | 0 | |a Invariant Subspaces |c by Heydar Radjavi, Peter Rosenthal |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1973 | |
300 | |a 1 Online-Ressource (XII, 222 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 77 |x 0071-1136 | |
500 | |a In recent years there has been a large amount of work on invariant subspaces, motivated by interest in the structure of non-self-adjoint of the results have been obtained in operators on Hilbert space. Some the context of certain general studies: the theory of the characteristic operator function, initiated by Livsic; the study of triangular models by Brodskii and co-workers; and the unitary dilation theory of Sz. Nagy and Foia!? Other theorems have proofs and interest independent of any particular structure theory. Since the leading workers in each of the structure theories have written excellent expositions of their work, (cf. Sz.-Nagy-Foia!? [1], Brodskii [1], and Gohberg-Krein [1], [2]), in this book we have concentrated on results independent of these theories. We hope that we have given a reasonably complete survey of such results and suggest that readers consult the above references for additional information. The table of contents indicates the material covered. We have restricted ourselves to operators on separable Hilbert space, in spite of the fact that most of the theorems are valid in all Hilbert spaces and many hold in Banach spaces as well. We felt that this restriction was sensible since it eases the exposition and since the separable-Hilbert space case of each of the theorems is generally the most interesting and potentially the most useful case | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invarianter Unterraum |0 (DE-588)4162212-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operator |0 (DE-588)4130529-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operator |0 (DE-588)4130529-2 |D s |
689 | 0 | 1 | |a Invarianter Unterraum |0 (DE-588)4162212-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Rosenthal, Peter |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-65574-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858297 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097904193536 |
---|---|
any_adam_object | |
author | Radjavi, Heydar |
author_facet | Radjavi, Heydar |
author_role | aut |
author_sort | Radjavi, Heydar |
author_variant | h r hr |
building | Verbundindex |
bvnumber | BV042422880 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863788721 (DE-599)BVBBV042422880 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-65574-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03537nmm a2200577zcb4500</leader><controlfield tag="001">BV042422880</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1973 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642655746</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-65574-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642655760</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-65576-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-65574-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863788721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422880</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Radjavi, Heydar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant Subspaces</subfield><subfield code="c">by Heydar Radjavi, Peter Rosenthal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 222 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">77</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In recent years there has been a large amount of work on invariant subspaces, motivated by interest in the structure of non-self-adjoint of the results have been obtained in operators on Hilbert space. Some the context of certain general studies: the theory of the characteristic operator function, initiated by Livsic; the study of triangular models by Brodskii and co-workers; and the unitary dilation theory of Sz. Nagy and Foia!? Other theorems have proofs and interest independent of any particular structure theory. Since the leading workers in each of the structure theories have written excellent expositions of their work, (cf. Sz.-Nagy-Foia!? [1], Brodskii [1], and Gohberg-Krein [1], [2]), in this book we have concentrated on results independent of these theories. We hope that we have given a reasonably complete survey of such results and suggest that readers consult the above references for additional information. The table of contents indicates the material covered. We have restricted ourselves to operators on separable Hilbert space, in spite of the fact that most of the theorems are valid in all Hilbert spaces and many hold in Banach spaces as well. We felt that this restriction was sensible since it eases the exposition and since the separable-Hilbert space case of each of the theorems is generally the most interesting and potentially the most useful case</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invarianter Unterraum</subfield><subfield code="0">(DE-588)4162212-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Invarianter Unterraum</subfield><subfield code="0">(DE-588)4162212-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenthal, Peter</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-65574-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858297</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422880 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642655746 9783642655760 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858297 |
oclc_num | 863788721 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 222 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spelling | Radjavi, Heydar Verfasser aut Invariant Subspaces by Heydar Radjavi, Peter Rosenthal Berlin, Heidelberg Springer Berlin Heidelberg 1973 1 Online-Ressource (XII, 222 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete 77 0071-1136 In recent years there has been a large amount of work on invariant subspaces, motivated by interest in the structure of non-self-adjoint of the results have been obtained in operators on Hilbert space. Some the context of certain general studies: the theory of the characteristic operator function, initiated by Livsic; the study of triangular models by Brodskii and co-workers; and the unitary dilation theory of Sz. Nagy and Foia!? Other theorems have proofs and interest independent of any particular structure theory. Since the leading workers in each of the structure theories have written excellent expositions of their work, (cf. Sz.-Nagy-Foia!? [1], Brodskii [1], and Gohberg-Krein [1], [2]), in this book we have concentrated on results independent of these theories. We hope that we have given a reasonably complete survey of such results and suggest that readers consult the above references for additional information. The table of contents indicates the material covered. We have restricted ourselves to operators on separable Hilbert space, in spite of the fact that most of the theorems are valid in all Hilbert spaces and many hold in Banach spaces as well. We felt that this restriction was sensible since it eases the exposition and since the separable-Hilbert space case of each of the theorems is generally the most interesting and potentially the most useful case Mathematics Mathematics, general Mathematik Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Invarianter Unterraum (DE-588)4162212-1 gnd rswk-swf Operator (DE-588)4130529-2 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Operator (DE-588)4130529-2 s Invarianter Unterraum (DE-588)4162212-1 s 1\p DE-604 Funktionalanalysis (DE-588)4018916-8 s 2\p DE-604 Hilbert-Raum (DE-588)4159850-7 s 3\p DE-604 Rosenthal, Peter Sonstige oth https://doi.org/10.1007/978-3-642-65574-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Radjavi, Heydar Invariant Subspaces Mathematics Mathematics, general Mathematik Funktionalanalysis (DE-588)4018916-8 gnd Invarianter Unterraum (DE-588)4162212-1 gnd Operator (DE-588)4130529-2 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
subject_GND | (DE-588)4018916-8 (DE-588)4162212-1 (DE-588)4130529-2 (DE-588)4159850-7 |
title | Invariant Subspaces |
title_auth | Invariant Subspaces |
title_exact_search | Invariant Subspaces |
title_full | Invariant Subspaces by Heydar Radjavi, Peter Rosenthal |
title_fullStr | Invariant Subspaces by Heydar Radjavi, Peter Rosenthal |
title_full_unstemmed | Invariant Subspaces by Heydar Radjavi, Peter Rosenthal |
title_short | Invariant Subspaces |
title_sort | invariant subspaces |
topic | Mathematics Mathematics, general Mathematik Funktionalanalysis (DE-588)4018916-8 gnd Invarianter Unterraum (DE-588)4162212-1 gnd Operator (DE-588)4130529-2 gnd Hilbert-Raum (DE-588)4159850-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Funktionalanalysis Invarianter Unterraum Operator Hilbert-Raum |
url | https://doi.org/10.1007/978-3-642-65574-6 |
work_keys_str_mv | AT radjaviheydar invariantsubspaces AT rosenthalpeter invariantsubspaces |