Continuous Flows in the Plane:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1974
|
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
201 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Topological Dynamics has its roots deep in the theory of differential equations, specifically in that portion called the "qualitative theory". The most notable early work was that of Poincare and Bendixson, regarding stability of solutions of differential equations, and the subject has grown around this nucleus. It has developed now to a point where it is fully capable of standing on its own feet as a branch of Mathematics studied for its intrinsic interest and beauty, and since the publication of Topological Dynamics by Gottschalk and Hedlund, it has been the subject of widespread study in its own right, as well as for the light it sheds on differential equations. The Bibliography for Topological Dyna mics by Gottschalk contains 1634 entries in the 1969 edition, and progress in the field since then has been even more prodigious. The study of dynamical systems is an idealization of the physical studies bearing such names as aerodynamics, hydrodynamics, electrodynamics, etc. We begin with some space (call it X) and we imagine in this space some sort of idealized particles which change position as time passes |
Beschreibung: | 1 Online-Ressource (XII, 464 p) |
ISBN: | 9783642655487 9783642655500 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-642-65548-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422878 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1974 |||| o||u| ||||||eng d | ||
020 | |a 9783642655487 |c Online |9 978-3-642-65548-7 | ||
020 | |a 9783642655500 |c Print |9 978-3-642-65550-0 | ||
024 | 7 | |a 10.1007/978-3-642-65548-7 |2 doi | |
035 | |a (OCoLC)863798394 | ||
035 | |a (DE-599)BVBBV042422878 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Beck, Anatole |e Verfasser |4 aut | |
245 | 1 | 0 | |a Continuous Flows in the Plane |c by Anatole Beck |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1974 | |
300 | |a 1 Online-Ressource (XII, 464 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 201 |x 0072-7830 | |
500 | |a Topological Dynamics has its roots deep in the theory of differential equations, specifically in that portion called the "qualitative theory". The most notable early work was that of Poincare and Bendixson, regarding stability of solutions of differential equations, and the subject has grown around this nucleus. It has developed now to a point where it is fully capable of standing on its own feet as a branch of Mathematics studied for its intrinsic interest and beauty, and since the publication of Topological Dynamics by Gottschalk and Hedlund, it has been the subject of widespread study in its own right, as well as for the light it sheds on differential equations. The Bibliography for Topological Dyna mics by Gottschalk contains 1634 entries in the 1969 edition, and progress in the field since then has been even more prodigious. The study of dynamical systems is an idealization of the physical studies bearing such names as aerodynamics, hydrodynamics, electrodynamics, etc. We begin with some space (call it X) and we imagine in this space some sort of idealized particles which change position as time passes | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Dynamik |0 (DE-588)4253345-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologische Dynamik |0 (DE-588)4253345-4 |D s |
689 | 0 | 1 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | 2 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-65548-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858295 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098201989120 |
---|---|
any_adam_object | |
author | Beck, Anatole |
author_facet | Beck, Anatole |
author_role | aut |
author_sort | Beck, Anatole |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV042422878 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863798394 (DE-599)BVBBV042422878 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-65548-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02957nmm a2200493zcb4500</leader><controlfield tag="001">BV042422878</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1974 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642655487</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-65548-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642655500</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-65550-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-65548-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863798394</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422878</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beck, Anatole</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous Flows in the Plane</subfield><subfield code="c">by Anatole Beck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1974</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 464 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">201</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Topological Dynamics has its roots deep in the theory of differential equations, specifically in that portion called the "qualitative theory". The most notable early work was that of Poincare and Bendixson, regarding stability of solutions of differential equations, and the subject has grown around this nucleus. It has developed now to a point where it is fully capable of standing on its own feet as a branch of Mathematics studied for its intrinsic interest and beauty, and since the publication of Topological Dynamics by Gottschalk and Hedlund, it has been the subject of widespread study in its own right, as well as for the light it sheds on differential equations. The Bibliography for Topological Dyna mics by Gottschalk contains 1634 entries in the 1969 edition, and progress in the field since then has been even more prodigious. The study of dynamical systems is an idealization of the physical studies bearing such names as aerodynamics, hydrodynamics, electrodynamics, etc. We begin with some space (call it X) and we imagine in this space some sort of idealized particles which change position as time passes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Dynamik</subfield><subfield code="0">(DE-588)4253345-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Dynamik</subfield><subfield code="0">(DE-588)4253345-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-65548-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858295</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422878 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642655487 9783642655500 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858295 |
oclc_num | 863798394 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 464 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1974 |
publishDateSearch | 1974 |
publishDateSort | 1974 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Beck, Anatole Verfasser aut Continuous Flows in the Plane by Anatole Beck Berlin, Heidelberg Springer Berlin Heidelberg 1974 1 Online-Ressource (XII, 464 p) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 201 0072-7830 Topological Dynamics has its roots deep in the theory of differential equations, specifically in that portion called the "qualitative theory". The most notable early work was that of Poincare and Bendixson, regarding stability of solutions of differential equations, and the subject has grown around this nucleus. It has developed now to a point where it is fully capable of standing on its own feet as a branch of Mathematics studied for its intrinsic interest and beauty, and since the publication of Topological Dynamics by Gottschalk and Hedlund, it has been the subject of widespread study in its own right, as well as for the light it sheds on differential equations. The Bibliography for Topological Dyna mics by Gottschalk contains 1634 entries in the 1969 edition, and progress in the field since then has been even more prodigious. The study of dynamical systems is an idealization of the physical studies bearing such names as aerodynamics, hydrodynamics, electrodynamics, etc. We begin with some space (call it X) and we imagine in this space some sort of idealized particles which change position as time passes Mathematics Mathematics, general Mathematik Mathematik (DE-588)4037944-9 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Topologische Dynamik (DE-588)4253345-4 gnd rswk-swf Topologische Dynamik (DE-588)4253345-4 s Strömungsmechanik (DE-588)4077970-1 s Mathematik (DE-588)4037944-9 s 1\p DE-604 https://doi.org/10.1007/978-3-642-65548-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Beck, Anatole Continuous Flows in the Plane Mathematics Mathematics, general Mathematik Mathematik (DE-588)4037944-9 gnd Strömungsmechanik (DE-588)4077970-1 gnd Topologische Dynamik (DE-588)4253345-4 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4077970-1 (DE-588)4253345-4 |
title | Continuous Flows in the Plane |
title_auth | Continuous Flows in the Plane |
title_exact_search | Continuous Flows in the Plane |
title_full | Continuous Flows in the Plane by Anatole Beck |
title_fullStr | Continuous Flows in the Plane by Anatole Beck |
title_full_unstemmed | Continuous Flows in the Plane by Anatole Beck |
title_short | Continuous Flows in the Plane |
title_sort | continuous flows in the plane |
topic | Mathematics Mathematics, general Mathematik Mathematik (DE-588)4037944-9 gnd Strömungsmechanik (DE-588)4077970-1 gnd Topologische Dynamik (DE-588)4253345-4 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Strömungsmechanik Topologische Dynamik |
url | https://doi.org/10.1007/978-3-642-65548-7 |
work_keys_str_mv | AT beckanatole continuousflowsintheplane |