Branching Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1972
|
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
196 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II. |
Beschreibung: | 1 Online-Ressource (XII, 288 p) |
ISBN: | 9783642653711 9783642653735 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-642-65371-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422870 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1972 |||| o||u| ||||||eng d | ||
020 | |a 9783642653711 |c Online |9 978-3-642-65371-1 | ||
020 | |a 9783642653735 |c Print |9 978-3-642-65373-5 | ||
024 | 7 | |a 10.1007/978-3-642-65371-1 |2 doi | |
035 | |a (OCoLC)905478968 | ||
035 | |a (DE-599)BVBBV042422870 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Athreya, Krishna B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Branching Processes |c by Krishna B. Athreya, Peter E. Ney |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1972 | |
300 | |a 1 Online-Ressource (XII, 288 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 196 |x 0072-7830 | |
500 | |a The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Markov-Verzweigungsprozess |0 (DE-588)4168930-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastik |0 (DE-588)4121729-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigungsprozess |0 (DE-588)4188184-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verzweigungsprozess |0 (DE-588)4188184-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Markov-Verzweigungsprozess |0 (DE-588)4168930-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Stochastik |0 (DE-588)4121729-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Ney, Peter E. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-65371-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858287 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098271195136 |
---|---|
any_adam_object | |
author | Athreya, Krishna B. |
author_facet | Athreya, Krishna B. |
author_role | aut |
author_sort | Athreya, Krishna B. |
author_variant | k b a kb kba |
building | Verbundindex |
bvnumber | BV042422870 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905478968 (DE-599)BVBBV042422870 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-65371-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03339nmm a2200553zcb4500</leader><controlfield tag="001">BV042422870</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1972 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642653711</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-65371-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642653735</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-65373-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-65371-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905478968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422870</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Athreya, Krishna B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Branching Processes</subfield><subfield code="c">by Krishna B. Athreya, Peter E. Ney</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 288 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">196</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Verzweigungsprozess</subfield><subfield code="0">(DE-588)4168930-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigungsprozess</subfield><subfield code="0">(DE-588)4188184-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verzweigungsprozess</subfield><subfield code="0">(DE-588)4188184-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Markov-Verzweigungsprozess</subfield><subfield code="0">(DE-588)4168930-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ney, Peter E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-65371-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858287</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422870 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642653711 9783642653735 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858287 |
oclc_num | 905478968 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 288 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Athreya, Krishna B. Verfasser aut Branching Processes by Krishna B. Athreya, Peter E. Ney Berlin, Heidelberg Springer Berlin Heidelberg 1972 1 Online-Ressource (XII, 288 p) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 196 0072-7830 The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II. Mathematics Mathematics, general Mathematik Markov-Verzweigungsprozess (DE-588)4168930-6 gnd rswk-swf Stochastik (DE-588)4121729-9 gnd rswk-swf Verzweigungsprozess (DE-588)4188184-9 gnd rswk-swf Verzweigungsprozess (DE-588)4188184-9 s 1\p DE-604 Markov-Verzweigungsprozess (DE-588)4168930-6 s 2\p DE-604 Stochastik (DE-588)4121729-9 s 3\p DE-604 Ney, Peter E. Sonstige oth https://doi.org/10.1007/978-3-642-65371-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Athreya, Krishna B. Branching Processes Mathematics Mathematics, general Mathematik Markov-Verzweigungsprozess (DE-588)4168930-6 gnd Stochastik (DE-588)4121729-9 gnd Verzweigungsprozess (DE-588)4188184-9 gnd |
subject_GND | (DE-588)4168930-6 (DE-588)4121729-9 (DE-588)4188184-9 |
title | Branching Processes |
title_auth | Branching Processes |
title_exact_search | Branching Processes |
title_full | Branching Processes by Krishna B. Athreya, Peter E. Ney |
title_fullStr | Branching Processes by Krishna B. Athreya, Peter E. Ney |
title_full_unstemmed | Branching Processes by Krishna B. Athreya, Peter E. Ney |
title_short | Branching Processes |
title_sort | branching processes |
topic | Mathematics Mathematics, general Mathematik Markov-Verzweigungsprozess (DE-588)4168930-6 gnd Stochastik (DE-588)4121729-9 gnd Verzweigungsprozess (DE-588)4188184-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Markov-Verzweigungsprozess Stochastik Verzweigungsprozess |
url | https://doi.org/10.1007/978-3-642-65371-1 |
work_keys_str_mv | AT athreyakrishnab branchingprocesses AT neypetere branchingprocesses |