The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1971
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs |
Beschreibung: | 1 Online-Ressource (VIII, 160 p) |
ISBN: | 9783642651083 9783642651106 |
DOI: | 10.1007/978-3-642-65108-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422859 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1971 |||| o||u| ||||||eng d | ||
020 | |a 9783642651083 |c Online |9 978-3-642-65108-3 | ||
020 | |a 9783642651106 |c Print |9 978-3-642-65110-6 | ||
024 | 7 | |a 10.1007/978-3-642-65108-3 |2 doi | |
035 | |a (OCoLC)863858961 | ||
035 | |a (DE-599)BVBBV042422859 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Yanenko, N. N. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Method of Fractional Steps |b The Solution of Problems of Mathematical Physics in Several Variables |c by N. N. Yanenko ; edited by Maurice Holt |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1971 | |
300 | |a 1 Online-Ressource (VIII, 160 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zwischenschrittverfahren |0 (DE-588)4191348-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Zwischenschrittverfahren |0 (DE-588)4191348-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | 1 | |a Zwischenschrittverfahren |0 (DE-588)4191348-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |D s |
689 | 2 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 3 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Holt, Maurice |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-65108-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858276 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098251272192 |
---|---|
any_adam_object | |
author | Yanenko, N. N. |
author_facet | Yanenko, N. N. |
author_role | aut |
author_sort | Yanenko, N. N. |
author_variant | n n y nn nny |
building | Verbundindex |
bvnumber | BV042422859 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863858961 (DE-599)BVBBV042422859 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-65108-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04233nmm a2200661zc 4500</leader><controlfield tag="001">BV042422859</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1971 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642651083</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-65108-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642651106</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-65110-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-65108-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863858961</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422859</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yanenko, N. N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Method of Fractional Steps</subfield><subfield code="b">The Solution of Problems of Mathematical Physics in Several Variables</subfield><subfield code="c">by N. N. Yanenko ; edited by Maurice Holt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1971</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 160 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zwischenschrittverfahren</subfield><subfield code="0">(DE-588)4191348-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zwischenschrittverfahren</subfield><subfield code="0">(DE-588)4191348-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zwischenschrittverfahren</subfield><subfield code="0">(DE-588)4191348-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holt, Maurice</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-65108-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858276</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422859 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642651083 9783642651106 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858276 |
oclc_num | 863858961 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 160 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1971 |
publishDateSearch | 1971 |
publishDateSort | 1971 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Yanenko, N. N. Verfasser aut The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables by N. N. Yanenko ; edited by Maurice Holt Berlin, Heidelberg Springer Berlin Heidelberg 1971 1 Online-Ressource (VIII, 160 p) txt rdacontent c rdamedia cr rdacarrier The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs Mathematics Numerical analysis Numerical Analysis Theoretical, Mathematical and Computational Physics Mathematik Grenzwertberechnung (DE-588)4158161-1 gnd rswk-swf Zwischenschrittverfahren (DE-588)4191348-6 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Zwischenschrittverfahren (DE-588)4191348-6 s 1\p DE-604 Mathematische Physik (DE-588)4037952-8 s 2\p DE-604 Grenzwertberechnung (DE-588)4158161-1 s 3\p DE-604 4\p DE-604 Holt, Maurice Sonstige oth https://doi.org/10.1007/978-3-642-65108-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yanenko, N. N. The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables Mathematics Numerical analysis Numerical Analysis Theoretical, Mathematical and Computational Physics Mathematik Grenzwertberechnung (DE-588)4158161-1 gnd Zwischenschrittverfahren (DE-588)4191348-6 gnd Mathematische Physik (DE-588)4037952-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4158161-1 (DE-588)4191348-6 (DE-588)4037952-8 (DE-588)4044779-0 |
title | The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables |
title_auth | The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables |
title_exact_search | The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables |
title_full | The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables by N. N. Yanenko ; edited by Maurice Holt |
title_fullStr | The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables by N. N. Yanenko ; edited by Maurice Holt |
title_full_unstemmed | The Method of Fractional Steps The Solution of Problems of Mathematical Physics in Several Variables by N. N. Yanenko ; edited by Maurice Holt |
title_short | The Method of Fractional Steps |
title_sort | the method of fractional steps the solution of problems of mathematical physics in several variables |
title_sub | The Solution of Problems of Mathematical Physics in Several Variables |
topic | Mathematics Numerical analysis Numerical Analysis Theoretical, Mathematical and Computational Physics Mathematik Grenzwertberechnung (DE-588)4158161-1 gnd Zwischenschrittverfahren (DE-588)4191348-6 gnd Mathematische Physik (DE-588)4037952-8 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Numerical analysis Numerical Analysis Theoretical, Mathematical and Computational Physics Mathematik Grenzwertberechnung Zwischenschrittverfahren Mathematische Physik Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-3-642-65108-3 |
work_keys_str_mv | AT yanenkonn themethodoffractionalstepsthesolutionofproblemsofmathematicalphysicsinseveralvariables AT holtmaurice themethodoffractionalstepsthesolutionofproblemsofmathematicalphysicsinseveralvariables |