An Introduction to the Theory of Multipliers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1971
|
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
175 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | When I first considered writing a book about multipliers, it was my intention to produce a moderate sized monograph which covered the theory as a whole and which would be accessible and readable to anyone with a basic knowledge of functional and harmonic analysis. I soon realized, however, that such a goal could not be attained. This realization is apparent in the preface to the preliminary version of the present work which was published in the Springer Lecture Notes in Mathematics, Volume 105, and is even more acute now, after the revision, expansion and emendation of that manuscript needed to produce the present volume. Consequently, as before, the treatment given in the following pages is eclectric rather than definitive. The choice and presentation of the topics is certainly not unique, and reflects both my personal preferences and inadequacies, as well as the necessity of restricting the book to a reasonable size. Throughout I have given special emphasis to the functional analytic aspects of the characterization problem for multipliers, and have, generally, only presented the commutative version of the theory. I have also, hopefully, provided too many details for the reader rather than too few |
Beschreibung: | 1 Online-Ressource (XXII, 284 p) |
ISBN: | 9783642650307 9783642650321 |
DOI: | 10.1007/978-3-642-65030-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422857 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1971 |||| o||u| ||||||eng d | ||
020 | |a 9783642650307 |c Online |9 978-3-642-65030-7 | ||
020 | |a 9783642650321 |c Print |9 978-3-642-65032-1 | ||
024 | 7 | |a 10.1007/978-3-642-65030-7 |2 doi | |
035 | |a (OCoLC)863791084 | ||
035 | |a (DE-599)BVBBV042422857 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Larsen, Ronald |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to the Theory of Multipliers |c by Ronald Larsen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1971 | |
300 | |a 1 Online-Ressource (XXII, 284 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 175 | |
500 | |a When I first considered writing a book about multipliers, it was my intention to produce a moderate sized monograph which covered the theory as a whole and which would be accessible and readable to anyone with a basic knowledge of functional and harmonic analysis. I soon realized, however, that such a goal could not be attained. This realization is apparent in the preface to the preliminary version of the present work which was published in the Springer Lecture Notes in Mathematics, Volume 105, and is even more acute now, after the revision, expansion and emendation of that manuscript needed to produce the present volume. Consequently, as before, the treatment given in the following pages is eclectric rather than definitive. The choice and presentation of the topics is certainly not unique, and reflects both my personal preferences and inadequacies, as well as the necessity of restricting the book to a reasonable size. Throughout I have given special emphasis to the functional analytic aspects of the characterization problem for multipliers, and have, generally, only presented the commutative version of the theory. I have also, hopefully, provided too many details for the reader rather than too few | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Multiplikatoralgebra |0 (DE-588)4340435-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multiplikator |0 (DE-588)4040703-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Multiplikator |0 (DE-588)4040703-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Multiplikatoralgebra |0 (DE-588)4340435-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
830 | 0 | |a Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 175 |w (DE-604)BV049758308 |9 175 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-65030-7 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive |
Datensatz im Suchindex
_version_ | 1805079046294339584 |
---|---|
adam_text | |
any_adam_object | |
author | Larsen, Ronald |
author_facet | Larsen, Ronald |
author_role | aut |
author_sort | Larsen, Ronald |
author_variant | r l rl |
building | Verbundindex |
bvnumber | BV042422857 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863791084 (DE-599)BVBBV042422857 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-65030-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042422857</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1971 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642650307</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-65030-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642650321</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-65032-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-65030-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863791084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422857</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Larsen, Ronald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to the Theory of Multipliers</subfield><subfield code="c">by Ronald Larsen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1971</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 284 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">175</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">When I first considered writing a book about multipliers, it was my intention to produce a moderate sized monograph which covered the theory as a whole and which would be accessible and readable to anyone with a basic knowledge of functional and harmonic analysis. I soon realized, however, that such a goal could not be attained. This realization is apparent in the preface to the preliminary version of the present work which was published in the Springer Lecture Notes in Mathematics, Volume 105, and is even more acute now, after the revision, expansion and emendation of that manuscript needed to produce the present volume. Consequently, as before, the treatment given in the following pages is eclectric rather than definitive. The choice and presentation of the topics is certainly not unique, and reflects both my personal preferences and inadequacies, as well as the necessity of restricting the book to a reasonable size. Throughout I have given special emphasis to the functional analytic aspects of the characterization problem for multipliers, and have, generally, only presented the commutative version of the theory. I have also, hopefully, provided too many details for the reader rather than too few</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multiplikatoralgebra</subfield><subfield code="0">(DE-588)4340435-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multiplikator</subfield><subfield code="0">(DE-588)4040703-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multiplikator</subfield><subfield code="0">(DE-588)4040703-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Multiplikatoralgebra</subfield><subfield code="0">(DE-588)4340435-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">175</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">175</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-65030-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield></record></collection> |
id | DE-604.BV042422857 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:45Z |
institution | BVB |
isbn | 9783642650307 9783642650321 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858274 |
oclc_num | 863791084 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 284 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1971 |
publishDateSearch | 1971 |
publishDateSort | 1971 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
series2 | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Larsen, Ronald Verfasser aut An Introduction to the Theory of Multipliers by Ronald Larsen Berlin, Heidelberg Springer Berlin Heidelberg 1971 1 Online-Ressource (XXII, 284 p) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 175 When I first considered writing a book about multipliers, it was my intention to produce a moderate sized monograph which covered the theory as a whole and which would be accessible and readable to anyone with a basic knowledge of functional and harmonic analysis. I soon realized, however, that such a goal could not be attained. This realization is apparent in the preface to the preliminary version of the present work which was published in the Springer Lecture Notes in Mathematics, Volume 105, and is even more acute now, after the revision, expansion and emendation of that manuscript needed to produce the present volume. Consequently, as before, the treatment given in the following pages is eclectric rather than definitive. The choice and presentation of the topics is certainly not unique, and reflects both my personal preferences and inadequacies, as well as the necessity of restricting the book to a reasonable size. Throughout I have given special emphasis to the functional analytic aspects of the characterization problem for multipliers, and have, generally, only presented the commutative version of the theory. I have also, hopefully, provided too many details for the reader rather than too few Mathematics Mathematics, general Mathematik Multiplikatoralgebra (DE-588)4340435-2 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Multiplikator (DE-588)4040703-2 gnd rswk-swf Multiplikator (DE-588)4040703-2 s 1\p DE-604 Funktionalanalysis (DE-588)4018916-8 s 2\p DE-604 Multiplikatoralgebra (DE-588)4340435-2 s 3\p DE-604 Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 175 (DE-604)BV049758308 175 https://doi.org/10.1007/978-3-642-65030-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Larsen, Ronald An Introduction to the Theory of Multipliers Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete Mathematics Mathematics, general Mathematik Multiplikatoralgebra (DE-588)4340435-2 gnd Funktionalanalysis (DE-588)4018916-8 gnd Multiplikator (DE-588)4040703-2 gnd |
subject_GND | (DE-588)4340435-2 (DE-588)4018916-8 (DE-588)4040703-2 |
title | An Introduction to the Theory of Multipliers |
title_auth | An Introduction to the Theory of Multipliers |
title_exact_search | An Introduction to the Theory of Multipliers |
title_full | An Introduction to the Theory of Multipliers by Ronald Larsen |
title_fullStr | An Introduction to the Theory of Multipliers by Ronald Larsen |
title_full_unstemmed | An Introduction to the Theory of Multipliers by Ronald Larsen |
title_short | An Introduction to the Theory of Multipliers |
title_sort | an introduction to the theory of multipliers |
topic | Mathematics Mathematics, general Mathematik Multiplikatoralgebra (DE-588)4340435-2 gnd Funktionalanalysis (DE-588)4018916-8 gnd Multiplikator (DE-588)4040703-2 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Multiplikatoralgebra Funktionalanalysis Multiplikator |
url | https://doi.org/10.1007/978-3-642-65030-7 |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT larsenronald anintroductiontothetheoryofmultipliers |