Transformation Groups in Differential Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1995
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
2. Folge ; 70 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric structures. All geometric structures are not created equal; some are creations of gods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geometric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lectures I gave in Tokyo and Berkeley in 1965 |
Beschreibung: | 1 Online-Ressource (VIII, 182p) |
ISBN: | 9783642619816 9783540586593 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-61981-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422836 | ||
003 | DE-604 | ||
005 | 20171212 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783642619816 |c Online |9 978-3-642-61981-6 | ||
020 | |a 9783540586593 |c Print |9 978-3-540-58659-3 | ||
024 | 7 | |a 10.1007/978-3-642-61981-6 |2 doi | |
035 | |a (OCoLC)1165442282 | ||
035 | |a (DE-599)BVBBV042422836 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kobayashi, Shoshichi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transformation Groups in Differential Geometry |c by Shoshichi Kobayashi |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1995 | |
300 | |a 1 Online-Ressource (VIII, 182p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Classics in Mathematics |x 0071-1136 | |
490 | 1 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete : 2. Folge |v 70 | |
500 | |a Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric structures. All geometric structures are not created equal; some are creations of gods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geometric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lectures I gave in Tokyo and Berkeley in 1965 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Systemtransformation |0 (DE-588)4060633-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transformationsgruppe |0 (DE-588)4127386-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Transformationsgruppe |0 (DE-588)4127386-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Systemtransformation |0 (DE-588)4060633-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 2. Folge ; 70 |w (DE-604)BV020546983 |9 70 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61981-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858253 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097805627392 |
---|---|
any_adam_object | |
author | Kobayashi, Shoshichi |
author_facet | Kobayashi, Shoshichi |
author_role | aut |
author_sort | Kobayashi, Shoshichi |
author_variant | s k sk |
building | Verbundindex |
bvnumber | BV042422836 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165442282 (DE-599)BVBBV042422836 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61981-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03403nmm a2200577zcb4500</leader><controlfield tag="001">BV042422836</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642619816</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61981-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540586593</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-58659-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61981-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165442282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422836</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kobayashi, Shoshichi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transformation Groups in Differential Geometry</subfield><subfield code="c">by Shoshichi Kobayashi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 182p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Classics in Mathematics</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete : 2. Folge</subfield><subfield code="v">70</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric structures. All geometric structures are not created equal; some are creations of gods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geometric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lectures I gave in Tokyo and Berkeley in 1965</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Systemtransformation</subfield><subfield code="0">(DE-588)4060633-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transformationsgruppe</subfield><subfield code="0">(DE-588)4127386-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Transformationsgruppe</subfield><subfield code="0">(DE-588)4127386-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Systemtransformation</subfield><subfield code="0">(DE-588)4060633-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">2. Folge ; 70</subfield><subfield code="w">(DE-604)BV020546983</subfield><subfield code="9">70</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61981-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858253</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422836 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642619816 9783540586593 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858253 |
oclc_num | 1165442282 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 182p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Ergebnisse der Mathematik und ihrer Grenzgebiete |
series2 | Classics in Mathematics Ergebnisse der Mathematik und ihrer Grenzgebiete : 2. Folge |
spelling | Kobayashi, Shoshichi Verfasser aut Transformation Groups in Differential Geometry by Shoshichi Kobayashi Berlin, Heidelberg Springer Berlin Heidelberg 1995 1 Online-Ressource (VIII, 182p) txt rdacontent c rdamedia cr rdacarrier Classics in Mathematics 0071-1136 Ergebnisse der Mathematik und ihrer Grenzgebiete : 2. Folge 70 Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric structures. All geometric structures are not created equal; some are creations of gods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geometric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lectures I gave in Tokyo and Berkeley in 1965 Mathematics Group theory Global differential geometry Differential Geometry Group Theory and Generalizations Mathematik Systemtransformation (DE-588)4060633-8 gnd rswk-swf Transformationsgruppe (DE-588)4127386-2 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Transformationsgruppe (DE-588)4127386-2 s 1\p DE-604 Systemtransformation (DE-588)4060633-8 s 2\p DE-604 Ergebnisse der Mathematik und ihrer Grenzgebiete 2. Folge ; 70 (DE-604)BV020546983 70 https://doi.org/10.1007/978-3-642-61981-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kobayashi, Shoshichi Transformation Groups in Differential Geometry Ergebnisse der Mathematik und ihrer Grenzgebiete Mathematics Group theory Global differential geometry Differential Geometry Group Theory and Generalizations Mathematik Systemtransformation (DE-588)4060633-8 gnd Transformationsgruppe (DE-588)4127386-2 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4060633-8 (DE-588)4127386-2 (DE-588)4012248-7 |
title | Transformation Groups in Differential Geometry |
title_auth | Transformation Groups in Differential Geometry |
title_exact_search | Transformation Groups in Differential Geometry |
title_full | Transformation Groups in Differential Geometry by Shoshichi Kobayashi |
title_fullStr | Transformation Groups in Differential Geometry by Shoshichi Kobayashi |
title_full_unstemmed | Transformation Groups in Differential Geometry by Shoshichi Kobayashi |
title_short | Transformation Groups in Differential Geometry |
title_sort | transformation groups in differential geometry |
topic | Mathematics Group theory Global differential geometry Differential Geometry Group Theory and Generalizations Mathematik Systemtransformation (DE-588)4060633-8 gnd Transformationsgruppe (DE-588)4127386-2 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Mathematics Group theory Global differential geometry Differential Geometry Group Theory and Generalizations Mathematik Systemtransformation Transformationsgruppe Differentialgeometrie |
url | https://doi.org/10.1007/978-3-642-61981-6 |
volume_link | (DE-604)BV020546983 |
work_keys_str_mv | AT kobayashishoshichi transformationgroupsindifferentialgeometry |