Manifolds all of whose Geodesics are Closed:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1978
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics
93 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: «Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: «Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail .. |
Beschreibung: | 1 Online-Ressource (IX, 264 p) |
ISBN: | 9783642618765 9783642618789 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-61876-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422830 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1978 |||| o||u| ||||||eng d | ||
020 | |a 9783642618765 |c Online |9 978-3-642-61876-5 | ||
020 | |a 9783642618789 |c Print |9 978-3-642-61878-9 | ||
024 | 7 | |a 10.1007/978-3-642-61876-5 |2 doi | |
035 | |a (OCoLC)863777818 | ||
035 | |a (DE-599)BVBBV042422830 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Besse, Arthur L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Manifolds all of whose Geodesics are Closed |c by Arthur L. Besse |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1978 | |
300 | |a 1 Online-Ressource (IX, 264 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |v 93 |x 0071-1136 | |
500 | |a X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: «Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: «Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail .. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geodäsie |0 (DE-588)4020202-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschlossene geodätische Linie |0 (DE-588)4157022-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Geschlossene geodätische Linie |0 (DE-588)4157022-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geodäsie |0 (DE-588)4020202-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61876-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858247 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097786753024 |
---|---|
any_adam_object | |
author | Besse, Arthur L. |
author_facet | Besse, Arthur L. |
author_role | aut |
author_sort | Besse, Arthur L. |
author_variant | a l b al alb |
building | Verbundindex |
bvnumber | BV042422830 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863777818 (DE-599)BVBBV042422830 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61876-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03252nmm a2200529zcb4500</leader><controlfield tag="001">BV042422830</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1978 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642618765</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61876-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642618789</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-61878-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61876-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863777818</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422830</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Besse, Arthur L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Manifolds all of whose Geodesics are Closed</subfield><subfield code="c">by Arthur L. Besse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1978</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 264 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">93</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: «Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: «Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail ..</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geodäsie</subfield><subfield code="0">(DE-588)4020202-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschlossene geodätische Linie</subfield><subfield code="0">(DE-588)4157022-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschlossene geodätische Linie</subfield><subfield code="0">(DE-588)4157022-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geodäsie</subfield><subfield code="0">(DE-588)4020202-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61876-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858247</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422830 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642618765 9783642618789 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858247 |
oclc_num | 863777818 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 264 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1978 |
publishDateSearch | 1978 |
publishDateSort | 1978 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |
spelling | Besse, Arthur L. Verfasser aut Manifolds all of whose Geodesics are Closed by Arthur L. Besse Berlin, Heidelberg Springer Berlin Heidelberg 1978 1 Online-Ressource (IX, 264 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics 93 0071-1136 X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: «Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: «Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail .. Mathematics Global differential geometry Differential Geometry Mathematik Geodäsie (DE-588)4020202-1 gnd rswk-swf Geschlossene geodätische Linie (DE-588)4157022-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s Geschlossene geodätische Linie (DE-588)4157022-4 s 1\p DE-604 Geodäsie (DE-588)4020202-1 s 2\p DE-604 https://doi.org/10.1007/978-3-642-61876-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Besse, Arthur L. Manifolds all of whose Geodesics are Closed Mathematics Global differential geometry Differential Geometry Mathematik Geodäsie (DE-588)4020202-1 gnd Geschlossene geodätische Linie (DE-588)4157022-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4020202-1 (DE-588)4157022-4 (DE-588)4037379-4 |
title | Manifolds all of whose Geodesics are Closed |
title_auth | Manifolds all of whose Geodesics are Closed |
title_exact_search | Manifolds all of whose Geodesics are Closed |
title_full | Manifolds all of whose Geodesics are Closed by Arthur L. Besse |
title_fullStr | Manifolds all of whose Geodesics are Closed by Arthur L. Besse |
title_full_unstemmed | Manifolds all of whose Geodesics are Closed by Arthur L. Besse |
title_short | Manifolds all of whose Geodesics are Closed |
title_sort | manifolds all of whose geodesics are closed |
topic | Mathematics Global differential geometry Differential Geometry Mathematik Geodäsie (DE-588)4020202-1 gnd Geschlossene geodätische Linie (DE-588)4157022-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Mathematics Global differential geometry Differential Geometry Mathematik Geodäsie Geschlossene geodätische Linie Mannigfaltigkeit |
url | https://doi.org/10.1007/978-3-642-61876-5 |
work_keys_str_mv | AT bessearthurl manifoldsallofwhosegeodesicsareclosed |