Geometries and Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course |
Beschreibung: | 1 Online-Ressource (VIII, 251p. 159 illus) |
ISBN: | 9783642615702 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-642-61570-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422807 | ||
003 | DE-604 | ||
005 | 20220217 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783642615702 |c Online |9 978-3-642-61570-2 | ||
024 | 7 | |a 10.1007/978-3-642-61570-2 |2 doi | |
035 | |a (OCoLC)879624009 | ||
035 | |a (DE-599)BVBBV042422807 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Nikulin, Viacheslav V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometries and Groups |c by Viacheslav V. Nikulin, Igor R. Shafarevich |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (VIII, 251p. 159 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Shafarevich, Igor R. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |z 978-3-540-15281-1 |n Druck-Ausgabe |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61570-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858224 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097749004288 |
---|---|
any_adam_object | |
author | Nikulin, Viacheslav V. |
author_facet | Nikulin, Viacheslav V. |
author_role | aut |
author_sort | Nikulin, Viacheslav V. |
author_variant | v v n vv vvn |
building | Verbundindex |
bvnumber | BV042422807 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624009 (DE-599)BVBBV042422807 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61570-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03129nmm a2200517zc 4500</leader><controlfield tag="001">BV042422807</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220217 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642615702</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61570-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61570-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624009</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikulin, Viacheslav V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometries and Groups</subfield><subfield code="c">by Viacheslav V. Nikulin, Igor R. Shafarevich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 251p. 159 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shafarevich, Igor R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="z">978-3-540-15281-1</subfield><subfield code="n">Druck-Ausgabe</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61570-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858224</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422807 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642615702 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858224 |
oclc_num | 879624009 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 251p. 159 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Nikulin, Viacheslav V. Verfasser aut Geometries and Groups by Viacheslav V. Nikulin, Igor R. Shafarevich Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (VIII, 251p. 159 illus) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course Mathematics Group theory Geometry Topology Group Theory and Generalizations Mathematik Geometrie (DE-588)4020236-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Shafarevich, Igor R. Sonstige oth Erscheint auch als 978-3-540-15281-1 Druck-Ausgabe https://doi.org/10.1007/978-3-642-61570-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nikulin, Viacheslav V. Geometries and Groups Mathematics Group theory Geometry Topology Group Theory and Generalizations Mathematik Geometrie (DE-588)4020236-7 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4072157-7 |
title | Geometries and Groups |
title_auth | Geometries and Groups |
title_exact_search | Geometries and Groups |
title_full | Geometries and Groups by Viacheslav V. Nikulin, Igor R. Shafarevich |
title_fullStr | Geometries and Groups by Viacheslav V. Nikulin, Igor R. Shafarevich |
title_full_unstemmed | Geometries and Groups by Viacheslav V. Nikulin, Igor R. Shafarevich |
title_short | Geometries and Groups |
title_sort | geometries and groups |
topic | Mathematics Group theory Geometry Topology Group Theory and Generalizations Mathematik Geometrie (DE-588)4020236-7 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Mathematics Group theory Geometry Topology Group Theory and Generalizations Mathematik Geometrie Gruppentheorie |
url | https://doi.org/10.1007/978-3-642-61570-2 |
work_keys_str_mv | AT nikulinviacheslavv geometriesandgroups AT shafarevichigorr geometriesandgroups |