Hilbert Modular Surfaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics
16 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Over the last 15 years important results have been achieved in the field of Hilbert Modular Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This Ergebnisbericht will soon become an indispensible tool for graduate students and researchers in this field |
Beschreibung: | 1 Online-Ressource (X, 291p. 39 illus) |
ISBN: | 9783642615535 9783642648687 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-61553-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422806 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783642615535 |c Online |9 978-3-642-61553-5 | ||
020 | |a 9783642648687 |c Print |9 978-3-642-64868-7 | ||
024 | 7 | |a 10.1007/978-3-642-61553-5 |2 doi | |
035 | |a (OCoLC)863776203 | ||
035 | |a (DE-599)BVBBV042422806 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Geer, Gerard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hilbert Modular Surfaces |c by Gerard Geer |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (X, 291p. 39 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics |v 16 |x 0071-1136 | |
500 | |a Over the last 15 years important results have been achieved in the field of Hilbert Modular Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This Ergebnisbericht will soon become an indispensible tool for graduate students and researchers in this field | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hilbert-Fläche |0 (DE-588)4159848-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbertsche Modulfläche |0 (DE-588)4159854-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Hilbertsche Modulfläche |0 (DE-588)4159854-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Hilbert-Fläche |0 (DE-588)4159848-9 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61553-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858223 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097757392896 |
---|---|
any_adam_object | |
author | Geer, Gerard |
author_facet | Geer, Gerard |
author_role | aut |
author_sort | Geer, Gerard |
author_variant | g g gg |
building | Verbundindex |
bvnumber | BV042422806 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863776203 (DE-599)BVBBV042422806 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61553-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02454nmm a2200529zcb4500</leader><controlfield tag="001">BV042422806</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642615535</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61553-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642648687</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-64868-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61553-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863776203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422806</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geer, Gerard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert Modular Surfaces</subfield><subfield code="c">by Gerard Geer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 291p. 39 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics</subfield><subfield code="v">16</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Over the last 15 years important results have been achieved in the field of Hilbert Modular Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This Ergebnisbericht will soon become an indispensible tool for graduate students and researchers in this field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Fläche</subfield><subfield code="0">(DE-588)4159848-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbertsche Modulfläche</subfield><subfield code="0">(DE-588)4159854-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hilbertsche Modulfläche</subfield><subfield code="0">(DE-588)4159854-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hilbert-Fläche</subfield><subfield code="0">(DE-588)4159848-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61553-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858223</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042422806 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642615535 9783642648687 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858223 |
oclc_num | 863776203 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 291p. 39 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics |
spelling | Geer, Gerard Verfasser aut Hilbert Modular Surfaces by Gerard Geer Berlin, Heidelberg Springer Berlin Heidelberg 1988 1 Online-Ressource (X, 291p. 39 illus) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge A Series of Modern Surveys in Mathematics 16 0071-1136 Over the last 15 years important results have been achieved in the field of Hilbert Modular Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This Ergebnisbericht will soon become an indispensible tool for graduate students and researchers in this field Mathematics Geometry, algebraic Algebraic Geometry Mathematik Hilbert-Fläche (DE-588)4159848-9 gnd rswk-swf Hilbertsche Modulfläche (DE-588)4159854-4 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Hilbertsche Modulfläche (DE-588)4159854-4 s 2\p DE-604 Hilbert-Fläche (DE-588)4159848-9 s 3\p DE-604 https://doi.org/10.1007/978-3-642-61553-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Geer, Gerard Hilbert Modular Surfaces Mathematics Geometry, algebraic Algebraic Geometry Mathematik Hilbert-Fläche (DE-588)4159848-9 gnd Hilbertsche Modulfläche (DE-588)4159854-4 gnd |
subject_GND | (DE-588)4159848-9 (DE-588)4159854-4 (DE-588)4151278-9 |
title | Hilbert Modular Surfaces |
title_auth | Hilbert Modular Surfaces |
title_exact_search | Hilbert Modular Surfaces |
title_full | Hilbert Modular Surfaces by Gerard Geer |
title_fullStr | Hilbert Modular Surfaces by Gerard Geer |
title_full_unstemmed | Hilbert Modular Surfaces by Gerard Geer |
title_short | Hilbert Modular Surfaces |
title_sort | hilbert modular surfaces |
topic | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Hilbert-Fläche (DE-588)4159848-9 gnd Hilbertsche Modulfläche (DE-588)4159854-4 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Hilbert-Fläche Hilbertsche Modulfläche Einführung |
url | https://doi.org/10.1007/978-3-642-61553-5 |
work_keys_str_mv | AT geergerard hilbertmodularsurfaces |