The Fokker-Planck Equation: Methods of Solution and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1996
|
Ausgabe: | Second Edition |
Schriftenreihe: | Springer Series in Synergetics
18 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book deals with the derivation of the Fokker-Planck equation, methods of solving it and some of its applications. Various methods such as the simulation method, the eigenfunction expansion, numerical integration, the variational method, and the matrix continued-fraction method are discussed. This is the first time that this last method, which is very effective in dealing with simple Fokker-Planck equations having two variables, appears in a textbook. The methods of solution are applied to the statistics of a simple laser model and to Brownian motion in potentials. Such Brownian motion is important in solid-state physics, chemical physics and electric circuit theory. This new study edition is meant as a text for graduate students in physics, chemical physics, and electrical engineering |
Beschreibung: | 1 Online-Ressource (XIV, 474p. 95 illus) |
ISBN: | 9783642615443 9783540615309 |
ISSN: | 0172-7389 |
DOI: | 10.1007/978-3-642-61544-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422805 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783642615443 |c Online |9 978-3-642-61544-3 | ||
020 | |a 9783540615309 |c Print |9 978-3-540-61530-9 | ||
024 | 7 | |a 10.1007/978-3-642-61544-3 |2 doi | |
035 | |a (OCoLC)906698554 | ||
035 | |a (DE-599)BVBBV042422805 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Risken, Hannes |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Fokker-Planck Equation |b Methods of Solution and Applications |c by Hannes Risken |
250 | |a Second Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1996 | |
300 | |a 1 Online-Ressource (XIV, 474p. 95 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Synergetics |v 18 |x 0172-7389 | |
500 | |a This book deals with the derivation of the Fokker-Planck equation, methods of solving it and some of its applications. Various methods such as the simulation method, the eigenfunction expansion, numerical integration, the variational method, and the matrix continued-fraction method are discussed. This is the first time that this last method, which is very effective in dealing with simple Fokker-Planck equations having two variables, appears in a textbook. The methods of solution are applied to the statistics of a simple laser model and to Brownian motion in potentials. Such Brownian motion is important in solid-state physics, chemical physics and electric circuit theory. This new study edition is meant as a text for graduate students in physics, chemical physics, and electrical engineering | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Applied and Technical Physics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fokker-Planck-Gleichung |0 (DE-588)4126333-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Statistische Thermodynamik |0 (DE-588)4126251-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Brownsche Bewegung |0 (DE-588)4128328-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61544-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858222 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097754247168 |
---|---|
any_adam_object | |
author | Risken, Hannes |
author_facet | Risken, Hannes |
author_role | aut |
author_sort | Risken, Hannes |
author_variant | h r hr |
building | Verbundindex |
bvnumber | BV042422805 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)906698554 (DE-599)BVBBV042422805 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61544-3 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03510nmm a2200685zcb4500</leader><controlfield tag="001">BV042422805</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642615443</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61544-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540615309</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-61530-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61544-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)906698554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422805</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Risken, Hannes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Fokker-Planck Equation</subfield><subfield code="b">Methods of Solution and Applications</subfield><subfield code="c">by Hannes Risken</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 474p. 95 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Synergetics</subfield><subfield code="v">18</subfield><subfield code="x">0172-7389</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the derivation of the Fokker-Planck equation, methods of solving it and some of its applications. Various methods such as the simulation method, the eigenfunction expansion, numerical integration, the variational method, and the matrix continued-fraction method are discussed. This is the first time that this last method, which is very effective in dealing with simple Fokker-Planck equations having two variables, appears in a textbook. The methods of solution are applied to the statistics of a simple laser model and to Brownian motion in potentials. Such Brownian motion is important in solid-state physics, chemical physics and electric circuit theory. This new study edition is meant as a text for graduate students in physics, chemical physics, and electrical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied and Technical Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fokker-Planck-Gleichung</subfield><subfield code="0">(DE-588)4126333-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Thermodynamik</subfield><subfield code="0">(DE-588)4126251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Brownsche Bewegung</subfield><subfield code="0">(DE-588)4128328-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61544-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858222</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422805 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642615443 9783540615309 |
issn | 0172-7389 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858222 |
oclc_num | 906698554 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 474p. 95 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Synergetics |
spelling | Risken, Hannes Verfasser aut The Fokker-Planck Equation Methods of Solution and Applications by Hannes Risken Second Edition Berlin, Heidelberg Springer Berlin Heidelberg 1996 1 Online-Ressource (XIV, 474p. 95 illus) txt rdacontent c rdamedia cr rdacarrier Springer Series in Synergetics 18 0172-7389 This book deals with the derivation of the Fokker-Planck equation, methods of solving it and some of its applications. Various methods such as the simulation method, the eigenfunction expansion, numerical integration, the variational method, and the matrix continued-fraction method are discussed. This is the first time that this last method, which is very effective in dealing with simple Fokker-Planck equations having two variables, appears in a textbook. The methods of solution are applied to the statistics of a simple laser model and to Brownian motion in potentials. Such Brownian motion is important in solid-state physics, chemical physics and electric circuit theory. This new study edition is meant as a text for graduate students in physics, chemical physics, and electrical engineering Mathematics Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Applied and Technical Physics Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Applications of Mathematics Mathematik Mathematische Physik Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Brownsche Bewegung (DE-588)4128328-4 gnd rswk-swf Fokker-Planck-Gleichung (DE-588)4126333-9 gnd rswk-swf Statistische Thermodynamik (DE-588)4126251-7 gnd rswk-swf Fokker-Planck-Gleichung (DE-588)4126333-9 s 1\p DE-604 Statistische Thermodynamik (DE-588)4126251-7 s 2\p DE-604 Stochastische Differentialgleichung (DE-588)4057621-8 s 3\p DE-604 Brownsche Bewegung (DE-588)4128328-4 s 4\p DE-604 https://doi.org/10.1007/978-3-642-61544-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Risken, Hannes The Fokker-Planck Equation Methods of Solution and Applications Mathematics Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Applied and Technical Physics Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Applications of Mathematics Mathematik Mathematische Physik Stochastische Differentialgleichung (DE-588)4057621-8 gnd Brownsche Bewegung (DE-588)4128328-4 gnd Fokker-Planck-Gleichung (DE-588)4126333-9 gnd Statistische Thermodynamik (DE-588)4126251-7 gnd |
subject_GND | (DE-588)4057621-8 (DE-588)4128328-4 (DE-588)4126333-9 (DE-588)4126251-7 |
title | The Fokker-Planck Equation Methods of Solution and Applications |
title_auth | The Fokker-Planck Equation Methods of Solution and Applications |
title_exact_search | The Fokker-Planck Equation Methods of Solution and Applications |
title_full | The Fokker-Planck Equation Methods of Solution and Applications by Hannes Risken |
title_fullStr | The Fokker-Planck Equation Methods of Solution and Applications by Hannes Risken |
title_full_unstemmed | The Fokker-Planck Equation Methods of Solution and Applications by Hannes Risken |
title_short | The Fokker-Planck Equation |
title_sort | the fokker planck equation methods of solution and applications |
title_sub | Methods of Solution and Applications |
topic | Mathematics Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Applied and Technical Physics Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Applications of Mathematics Mathematik Mathematische Physik Stochastische Differentialgleichung (DE-588)4057621-8 gnd Brownsche Bewegung (DE-588)4128328-4 gnd Fokker-Planck-Gleichung (DE-588)4126333-9 gnd Statistische Thermodynamik (DE-588)4126251-7 gnd |
topic_facet | Mathematics Distribution (Probability theory) Mathematical physics Probability Theory and Stochastic Processes Applied and Technical Physics Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Applications of Mathematics Mathematik Mathematische Physik Stochastische Differentialgleichung Brownsche Bewegung Fokker-Planck-Gleichung Statistische Thermodynamik |
url | https://doi.org/10.1007/978-3-642-61544-3 |
work_keys_str_mv | AT riskenhannes thefokkerplanckequationmethodsofsolutionandapplications |