Several Complex Variables III: Geometric Function Theory
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1989
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
9 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space <en (i. e. JEH( 1 variables, as in the case n = 1, a central theme deals with questions of growth of functions and the distribution of their zeros. However, there are significant differences between the cases of one and several variables. In the first place there is the fact that for n> 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space |
Beschreibung: | 1 Online-Ressource (VII, 261p) |
ISBN: | 9783642613081 9783642647857 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-642-61308-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422793 | ||
003 | DE-604 | ||
005 | 20170922 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1989 |||| o||u| ||||||eng d | ||
020 | |a 9783642613081 |c Online |9 978-3-642-61308-1 | ||
020 | |a 9783642647857 |c Print |9 978-3-642-64785-7 | ||
024 | 7 | |a 10.1007/978-3-642-61308-1 |2 doi | |
035 | |a (OCoLC)863777024 | ||
035 | |a (DE-599)BVBBV042422793 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Several Complex Variables III |b Geometric Function Theory |c edited by G. M. Khenkin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1989 | |
300 | |a 1 Online-Ressource (VII, 261p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of Mathematical Sciences |v 9 |x 0938-0396 | |
500 | |a We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space <en (i. e. JEH( 1 variables, as in the case n = 1, a central theme deals with questions of growth of functions and the distribution of their zeros. However, there are significant differences between the cases of one and several variables. In the first place there is the fact that for n> 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Khenkin, G. M. |4 edt | |
830 | 0 | |a Encyclopaedia of Mathematical Sciences |v 9 |w (DE-604)BV024126459 |9 9 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61308-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858210 |
Datensatz im Suchindex
_version_ | 1804153097738518528 |
---|---|
any_adam_object | |
author2 | Khenkin, G. M. |
author2_role | edt |
author2_variant | g m k gm gmk |
author_facet | Khenkin, G. M. |
building | Verbundindex |
bvnumber | BV042422793 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863777024 (DE-599)BVBBV042422793 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61308-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02250nmm a2200457zcb4500</leader><controlfield tag="001">BV042422793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170922 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642613081</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61308-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642647857</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-64785-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61308-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863777024</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422793</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several Complex Variables III</subfield><subfield code="b">Geometric Function Theory</subfield><subfield code="c">edited by G. M. Khenkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 261p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">9</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space <en (i. e. JEH( 1 variables, as in the case n = 1, a central theme deals with questions of growth of functions and the distribution of their zeros. However, there are significant differences between the cases of one and several variables. In the first place there is the fact that for n> 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khenkin, G. M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">9</subfield><subfield code="w">(DE-604)BV024126459</subfield><subfield code="9">9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61308-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858210</subfield></datafield></record></collection> |
id | DE-604.BV042422793 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642613081 9783642647857 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858210 |
oclc_num | 863777024 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 261p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Encyclopaedia of Mathematical Sciences |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Several Complex Variables III Geometric Function Theory edited by G. M. Khenkin Berlin, Heidelberg Springer Berlin Heidelberg 1989 1 Online-Ressource (VII, 261p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 9 0938-0396 We consider the basic problems, notions and facts in the theory of entire functions of several variables, i. e. functions J(z) holomorphic in the entire n space <en (i. e. JEH( 1 variables, as in the case n = 1, a central theme deals with questions of growth of functions and the distribution of their zeros. However, there are significant differences between the cases of one and several variables. In the first place there is the fact that for n> 1 the zero set of an entire function is not discrete and therefore one has no analogue of a tool such as the canonical Weierstrass product, which is fundamental in the case n = 1. Second, for n> 1 there exist several different natural ways of exhausting the space Mathematics Geometry, algebraic Global analysis (Mathematics) Analysis Algebraic Geometry Theoretical, Mathematical and Computational Physics Mathematik Khenkin, G. M. edt Encyclopaedia of Mathematical Sciences 9 (DE-604)BV024126459 9 https://doi.org/10.1007/978-3-642-61308-1 Verlag Volltext |
spellingShingle | Several Complex Variables III Geometric Function Theory Encyclopaedia of Mathematical Sciences Mathematics Geometry, algebraic Global analysis (Mathematics) Analysis Algebraic Geometry Theoretical, Mathematical and Computational Physics Mathematik |
title | Several Complex Variables III Geometric Function Theory |
title_auth | Several Complex Variables III Geometric Function Theory |
title_exact_search | Several Complex Variables III Geometric Function Theory |
title_full | Several Complex Variables III Geometric Function Theory edited by G. M. Khenkin |
title_fullStr | Several Complex Variables III Geometric Function Theory edited by G. M. Khenkin |
title_full_unstemmed | Several Complex Variables III Geometric Function Theory edited by G. M. Khenkin |
title_short | Several Complex Variables III |
title_sort | several complex variables iii geometric function theory |
title_sub | Geometric Function Theory |
topic | Mathematics Geometry, algebraic Global analysis (Mathematics) Analysis Algebraic Geometry Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Geometry, algebraic Global analysis (Mathematics) Analysis Algebraic Geometry Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-642-61308-1 |
volume_link | (DE-604)BV024126459 |
work_keys_str_mv | AT khenkingm severalcomplexvariablesiiigeometricfunctiontheory |