Analysis II: Convex Analysis and Approximation Theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1990
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
14 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Intended for a wide range of readers, this book covers the main ideas of convex analysis and approximation theory. The author discusses the sources of these two trends in mathematical analysis, develops the main concepts and results, and mentions some beautiful theorems. The relationship of convex analysis to optimization problems, to the calculus of variations, to optimal control and to geometry is considered, and the evolution of the ideas underlying approximation theory, from its origins to the present day, is discussed. The book is addressed both to students who want to acquaint themselves with these trends and to lecturers in mathematical analysis, optimization and numerical methods, as well as to researchers in these fields who would like to tackle the topic as a whole and seek inspiration for its further development |
Beschreibung: | 1 Online-Ressource (VII, 255p. 21 illus) |
ISBN: | 9783642612671 9783642647680 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-642-61267-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422791 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783642612671 |c Online |9 978-3-642-61267-1 | ||
020 | |a 9783642647680 |c Print |9 978-3-642-64768-0 | ||
024 | 7 | |a 10.1007/978-3-642-61267-1 |2 doi | |
035 | |a (OCoLC)863752506 | ||
035 | |a (DE-599)BVBBV042422791 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.8 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gamkrelidze, R. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analysis II |b Convex Analysis and Approximation Theory |c edited by R. V. Gamkrelidze |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1990 | |
300 | |a 1 Online-Ressource (VII, 255p. 21 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 14 |x 0938-0396 | |
500 | |a Intended for a wide range of readers, this book covers the main ideas of convex analysis and approximation theory. The author discusses the sources of these two trends in mathematical analysis, develops the main concepts and results, and mentions some beautiful theorems. The relationship of convex analysis to optimization problems, to the calculus of variations, to optimal control and to geometry is considered, and the evolution of the ideas underlying approximation theory, from its origins to the present day, is discussed. The book is addressed both to students who want to acquaint themselves with these trends and to lecturers in mathematical analysis, optimization and numerical methods, as well as to researchers in these fields who would like to tackle the topic as a whole and seek inspiration for its further development | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Economics | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Economic Theory | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Wirtschaft | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61267-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858208 |
Datensatz im Suchindex
_version_ | 1804153097728032768 |
---|---|
any_adam_object | |
author | Gamkrelidze, R. V. |
author_facet | Gamkrelidze, R. V. |
author_role | aut |
author_sort | Gamkrelidze, R. V. |
author_variant | r v g rv rvg |
building | Verbundindex |
bvnumber | BV042422791 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863752506 (DE-599)BVBBV042422791 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61267-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02436nmm a2200493zcb4500</leader><controlfield tag="001">BV042422791</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642612671</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61267-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642647680</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-64768-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61267-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863752506</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422791</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gamkrelidze, R. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis II</subfield><subfield code="b">Convex Analysis and Approximation Theory</subfield><subfield code="c">edited by R. V. Gamkrelidze</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 255p. 21 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">14</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Intended for a wide range of readers, this book covers the main ideas of convex analysis and approximation theory. The author discusses the sources of these two trends in mathematical analysis, develops the main concepts and results, and mentions some beautiful theorems. The relationship of convex analysis to optimization problems, to the calculus of variations, to optimal control and to geometry is considered, and the evolution of the ideas underlying approximation theory, from its origins to the present day, is discussed. The book is addressed both to students who want to acquaint themselves with these trends and to lecturers in mathematical analysis, optimization and numerical methods, as well as to researchers in these fields who would like to tackle the topic as a whole and seek inspiration for its further development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61267-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858208</subfield></datafield></record></collection> |
id | DE-604.BV042422791 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642612671 9783642647680 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858208 |
oclc_num | 863752506 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 255p. 21 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Gamkrelidze, R. V. Verfasser aut Analysis II Convex Analysis and Approximation Theory edited by R. V. Gamkrelidze Berlin, Heidelberg Springer Berlin Heidelberg 1990 1 Online-Ressource (VII, 255p. 21 illus) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 14 0938-0396 Intended for a wide range of readers, this book covers the main ideas of convex analysis and approximation theory. The author discusses the sources of these two trends in mathematical analysis, develops the main concepts and results, and mentions some beautiful theorems. The relationship of convex analysis to optimization problems, to the calculus of variations, to optimal control and to geometry is considered, and the evolution of the ideas underlying approximation theory, from its origins to the present day, is discussed. The book is addressed both to students who want to acquaint themselves with these trends and to lecturers in mathematical analysis, optimization and numerical methods, as well as to researchers in these fields who would like to tackle the topic as a whole and seek inspiration for its further development Mathematics Systems theory Geometry Mathematical optimization Economics Real Functions Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Economic Theory Mathematik Wirtschaft https://doi.org/10.1007/978-3-642-61267-1 Verlag Volltext |
spellingShingle | Gamkrelidze, R. V. Analysis II Convex Analysis and Approximation Theory Mathematics Systems theory Geometry Mathematical optimization Economics Real Functions Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Economic Theory Mathematik Wirtschaft |
title | Analysis II Convex Analysis and Approximation Theory |
title_auth | Analysis II Convex Analysis and Approximation Theory |
title_exact_search | Analysis II Convex Analysis and Approximation Theory |
title_full | Analysis II Convex Analysis and Approximation Theory edited by R. V. Gamkrelidze |
title_fullStr | Analysis II Convex Analysis and Approximation Theory edited by R. V. Gamkrelidze |
title_full_unstemmed | Analysis II Convex Analysis and Approximation Theory edited by R. V. Gamkrelidze |
title_short | Analysis II |
title_sort | analysis ii convex analysis and approximation theory |
title_sub | Convex Analysis and Approximation Theory |
topic | Mathematics Systems theory Geometry Mathematical optimization Economics Real Functions Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Economic Theory Mathematik Wirtschaft |
topic_facet | Mathematics Systems theory Geometry Mathematical optimization Economics Real Functions Systems Theory, Control Calculus of Variations and Optimal Control; Optimization Economic Theory Mathematik Wirtschaft |
url | https://doi.org/10.1007/978-3-642-61267-1 |
work_keys_str_mv | AT gamkrelidzerv analysisiiconvexanalysisandapproximationtheory |