Relativistic Quantum Mechanics and Introduction to Field Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1996
|
Schriftenreihe: | Texts and Monographs in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A fully relativistic treatment of the quantum mechanics of particles requires the introduction of quantum field theory, that is to say, the quantum mechanics of systems with an infinite number of degrees of freedom. This is because the relativistic equivalence of mass and energy plus the quantum possibility of fluctuations imply the existence of (real or virtual) creation and annihilation of particles in unlimited numbers. In spite of this, there exist processes, and energy ranges, where a treatment in terms of ordinary quantum mechanical tools is appropriate, and the approximation of neglecting the full field-theoretic description is justified. Thus, one may use concepts such as potentials, and wave equations, classical fields and classical currents, etc. The present text is devoted precisely to the systematic discussion of these topics, to which we have added a general description of one- and two-particle relativistic states, in particular for scattering processes. A field-theoretic approach may not be entirely avoided, and in fact an introduction to quantum field theory is presented in this text. However, field theory is not the object per se of this book; apart from a few examples, field theory is mainly employed to establish the connection with equivalent potentials, to study the classical limit of the emission of radiation or to discuss the propagation of a fermion in classical electromagnetic fields |
Beschreibung: | 1 Online-Ressource (XII, 332p. 26 illus) |
ISBN: | 9783642610578 9783642646744 |
ISSN: | 1864-5879 |
DOI: | 10.1007/978-3-642-61057-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422782 | ||
003 | DE-604 | ||
005 | 20171011 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783642610578 |c Online |9 978-3-642-61057-8 | ||
020 | |a 9783642646744 |c Print |9 978-3-642-64674-4 | ||
024 | 7 | |a 10.1007/978-3-642-61057-8 |2 doi | |
035 | |a (OCoLC)1184439123 | ||
035 | |a (DE-599)BVBBV042422782 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ynduráin, Francisco J. |d 1940-2008 |e Verfasser |0 (DE-588)121133125 |4 aut | |
245 | 1 | 0 | |a Relativistic Quantum Mechanics and Introduction to Field Theory |c by Francisco J. Ynduráin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1996 | |
300 | |a 1 Online-Ressource (XII, 332p. 26 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts and Monographs in Physics |x 1864-5879 | |
500 | |a A fully relativistic treatment of the quantum mechanics of particles requires the introduction of quantum field theory, that is to say, the quantum mechanics of systems with an infinite number of degrees of freedom. This is because the relativistic equivalence of mass and energy plus the quantum possibility of fluctuations imply the existence of (real or virtual) creation and annihilation of particles in unlimited numbers. In spite of this, there exist processes, and energy ranges, where a treatment in terms of ordinary quantum mechanical tools is appropriate, and the approximation of neglecting the full field-theoretic description is justified. Thus, one may use concepts such as potentials, and wave equations, classical fields and classical currents, etc. The present text is devoted precisely to the systematic discussion of these topics, to which we have added a general description of one- and two-particle relativistic states, in particular for scattering processes. A field-theoretic approach may not be entirely avoided, and in fact an introduction to quantum field theory is presented in this text. However, field theory is not the object per se of this book; apart from a few examples, field theory is mainly employed to establish the connection with equivalent potentials, to study the classical limit of the emission of radiation or to discuss the propagation of a fermion in classical electromagnetic fields | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Elementary Particles, Quantum Field Theory | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Relativistische Quantenmechanik |0 (DE-588)4177687-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Relativistische Quantenmechanik |0 (DE-588)4177687-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61057-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858199 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097704964096 |
---|---|
any_adam_object | |
author | Ynduráin, Francisco J. 1940-2008 |
author_GND | (DE-588)121133125 |
author_facet | Ynduráin, Francisco J. 1940-2008 |
author_role | aut |
author_sort | Ynduráin, Francisco J. 1940-2008 |
author_variant | f j y fj fjy |
building | Verbundindex |
bvnumber | BV042422782 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184439123 (DE-599)BVBBV042422782 |
dewey-full | 512.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.3 |
dewey-search | 512.3 |
dewey-sort | 3512.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61057-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03602nmm a2200589zc 4500</leader><controlfield tag="001">BV042422782</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171011 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642610578</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61057-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642646744</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-64674-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61057-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184439123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422782</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ynduráin, Francisco J.</subfield><subfield code="d">1940-2008</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121133125</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relativistic Quantum Mechanics and Introduction to Field Theory</subfield><subfield code="c">by Francisco J. Ynduráin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 332p. 26 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts and Monographs in Physics</subfield><subfield code="x">1864-5879</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A fully relativistic treatment of the quantum mechanics of particles requires the introduction of quantum field theory, that is to say, the quantum mechanics of systems with an infinite number of degrees of freedom. This is because the relativistic equivalence of mass and energy plus the quantum possibility of fluctuations imply the existence of (real or virtual) creation and annihilation of particles in unlimited numbers. In spite of this, there exist processes, and energy ranges, where a treatment in terms of ordinary quantum mechanical tools is appropriate, and the approximation of neglecting the full field-theoretic description is justified. Thus, one may use concepts such as potentials, and wave equations, classical fields and classical currents, etc. The present text is devoted precisely to the systematic discussion of these topics, to which we have added a general description of one- and two-particle relativistic states, in particular for scattering processes. A field-theoretic approach may not be entirely avoided, and in fact an introduction to quantum field theory is presented in this text. However, field theory is not the object per se of this book; apart from a few examples, field theory is mainly employed to establish the connection with equivalent potentials, to study the classical limit of the emission of radiation or to discuss the propagation of a fermion in classical electromagnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relativistische Quantenmechanik</subfield><subfield code="0">(DE-588)4177687-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Relativistische Quantenmechanik</subfield><subfield code="0">(DE-588)4177687-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61057-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858199</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422782 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642610578 9783642646744 |
issn | 1864-5879 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858199 |
oclc_num | 1184439123 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 332p. 26 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Texts and Monographs in Physics |
spelling | Ynduráin, Francisco J. 1940-2008 Verfasser (DE-588)121133125 aut Relativistic Quantum Mechanics and Introduction to Field Theory by Francisco J. Ynduráin Berlin, Heidelberg Springer Berlin Heidelberg 1996 1 Online-Ressource (XII, 332p. 26 illus) txt rdacontent c rdamedia cr rdacarrier Texts and Monographs in Physics 1864-5879 A fully relativistic treatment of the quantum mechanics of particles requires the introduction of quantum field theory, that is to say, the quantum mechanics of systems with an infinite number of degrees of freedom. This is because the relativistic equivalence of mass and energy plus the quantum possibility of fluctuations imply the existence of (real or virtual) creation and annihilation of particles in unlimited numbers. In spite of this, there exist processes, and energy ranges, where a treatment in terms of ordinary quantum mechanical tools is appropriate, and the approximation of neglecting the full field-theoretic description is justified. Thus, one may use concepts such as potentials, and wave equations, classical fields and classical currents, etc. The present text is devoted precisely to the systematic discussion of these topics, to which we have added a general description of one- and two-particle relativistic states, in particular for scattering processes. A field-theoretic approach may not be entirely avoided, and in fact an introduction to quantum field theory is presented in this text. However, field theory is not the object per se of this book; apart from a few examples, field theory is mainly employed to establish the connection with equivalent potentials, to study the classical limit of the emission of radiation or to discuss the propagation of a fermion in classical electromagnetic fields Mathematics Field theory (Physics) Quantum theory Mathematical physics Field Theory and Polynomials Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Quantum Physics Mathematik Mathematische Physik Quantentheorie Relativistische Quantenmechanik (DE-588)4177687-2 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s 1\p DE-604 Relativistische Quantenmechanik (DE-588)4177687-2 s 2\p DE-604 https://doi.org/10.1007/978-3-642-61057-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ynduráin, Francisco J. 1940-2008 Relativistic Quantum Mechanics and Introduction to Field Theory Mathematics Field theory (Physics) Quantum theory Mathematical physics Field Theory and Polynomials Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Quantum Physics Mathematik Mathematische Physik Quantentheorie Relativistische Quantenmechanik (DE-588)4177687-2 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4177687-2 (DE-588)4047984-5 |
title | Relativistic Quantum Mechanics and Introduction to Field Theory |
title_auth | Relativistic Quantum Mechanics and Introduction to Field Theory |
title_exact_search | Relativistic Quantum Mechanics and Introduction to Field Theory |
title_full | Relativistic Quantum Mechanics and Introduction to Field Theory by Francisco J. Ynduráin |
title_fullStr | Relativistic Quantum Mechanics and Introduction to Field Theory by Francisco J. Ynduráin |
title_full_unstemmed | Relativistic Quantum Mechanics and Introduction to Field Theory by Francisco J. Ynduráin |
title_short | Relativistic Quantum Mechanics and Introduction to Field Theory |
title_sort | relativistic quantum mechanics and introduction to field theory |
topic | Mathematics Field theory (Physics) Quantum theory Mathematical physics Field Theory and Polynomials Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Quantum Physics Mathematik Mathematische Physik Quantentheorie Relativistische Quantenmechanik (DE-588)4177687-2 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Mathematics Field theory (Physics) Quantum theory Mathematical physics Field Theory and Polynomials Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Quantum Physics Mathematik Mathematische Physik Quantentheorie Relativistische Quantenmechanik Quantenfeldtheorie |
url | https://doi.org/10.1007/978-3-642-61057-8 |
work_keys_str_mv | AT yndurainfranciscoj relativisticquantummechanicsandintroductiontofieldtheory |