Spectral Elements for Transport-Dominated Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1997
|
Schriftenreihe: | Lecture Notes in Computational Science and Engineering
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the last few years there has been a growing interest in the development of numerical techniques appropriate for the approximation of differential model problems presenting multiscale solutions. This is the case, for instance, with functions displaying a smooth behavior, except in certain regions where sudden and sharp variations are localized. Typical examples are internal or boundary layers. When the number of degrees of freedom in the discretization process is not sufficient to ensure a fine resolution of the layers, some stabilization procedures are needed to avoid unpleasant oscillatory effects, without adding too much artificial viscosity to the scheme. In the field of finite elements, the streamline diffusion method, the Galerkin least-squares method, the bubble function approach, and other recent similar techniques provide excellent treatments of transport equations of elliptic type with small diffusive terms, referred to in fluid dynamics as advection-diffusion (or convection-diffusion) equations. Goals This book is an attempt to guide the reader in the construction of a computational code based on the spectral collocation method, using algebraic polynomials. The main topic is the approximation of elliptic type boundary-value partial differential equations in 2-D, with special attention to transport-diffusion equations, where the second-order diffusive terms are strongly dominated by the first-order advective terms. Applications will be considered especially in the case where nonlinear systems of partial differential equations can be reduced to a sequence of transport-diffusion equations |
Beschreibung: | 1 Online-Ressource (X, 215 p) |
ISBN: | 9783642591853 9783540626497 |
ISSN: | 1439-7358 |
DOI: | 10.1007/978-3-642-59185-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422743 | ||
003 | DE-604 | ||
005 | 20171218 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783642591853 |c Online |9 978-3-642-59185-3 | ||
020 | |a 9783540626497 |c Print |9 978-3-540-62649-7 | ||
024 | 7 | |a 10.1007/978-3-642-59185-3 |2 doi | |
035 | |a (OCoLC)1184411538 | ||
035 | |a (DE-599)BVBBV042422743 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Funaro, Daniele |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral Elements for Transport-Dominated Equations |c by Daniele Funaro |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1997 | |
300 | |a 1 Online-Ressource (X, 215 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Computational Science and Engineering |v 1 |x 1439-7358 | |
500 | |a In the last few years there has been a growing interest in the development of numerical techniques appropriate for the approximation of differential model problems presenting multiscale solutions. This is the case, for instance, with functions displaying a smooth behavior, except in certain regions where sudden and sharp variations are localized. Typical examples are internal or boundary layers. When the number of degrees of freedom in the discretization process is not sufficient to ensure a fine resolution of the layers, some stabilization procedures are needed to avoid unpleasant oscillatory effects, without adding too much artificial viscosity to the scheme. In the field of finite elements, the streamline diffusion method, the Galerkin least-squares method, the bubble function approach, and other recent similar techniques provide excellent treatments of transport equations of elliptic type with small diffusive terms, referred to in fluid dynamics as advection-diffusion (or convection-diffusion) equations. Goals This book is an attempt to guide the reader in the construction of a computational code based on the spectral collocation method, using algebraic polynomials. The main topic is the approximation of elliptic type boundary-value partial differential equations in 2-D, with special attention to transport-diffusion equations, where the second-order diffusive terms are strongly dominated by the first-order advective terms. Applications will be considered especially in the case where nonlinear systems of partial differential equations can be reduced to a sequence of transport-diffusion equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Physics | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Complexity | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Spektralmethode |0 (DE-588)4224817-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kollokationsmethode |0 (DE-588)4164696-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffusion |0 (DE-588)4012277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Advektion |0 (DE-588)4206361-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Advektion |0 (DE-588)4206361-9 |D s |
689 | 0 | 1 | |a Diffusion |0 (DE-588)4012277-3 |D s |
689 | 0 | 2 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 3 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 4 | |a Kollokationsmethode |0 (DE-588)4164696-4 |D s |
689 | 0 | 5 | |a Spektralmethode |0 (DE-588)4224817-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Lecture Notes in Computational Science and Engineering |v 1 |w (DE-604)BV011386476 |9 1 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-59185-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858160 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097591717888 |
---|---|
any_adam_object | |
author | Funaro, Daniele |
author_facet | Funaro, Daniele |
author_role | aut |
author_sort | Funaro, Daniele |
author_variant | d f df |
building | Verbundindex |
bvnumber | BV042422743 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184411538 (DE-599)BVBBV042422743 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-59185-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04056nmm a2200649zcb4500</leader><controlfield tag="001">BV042422743</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642591853</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-59185-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540626497</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-62649-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-59185-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184411538</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422743</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Funaro, Daniele</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral Elements for Transport-Dominated Equations</subfield><subfield code="c">by Daniele Funaro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 215 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">1</subfield><subfield code="x">1439-7358</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the last few years there has been a growing interest in the development of numerical techniques appropriate for the approximation of differential model problems presenting multiscale solutions. This is the case, for instance, with functions displaying a smooth behavior, except in certain regions where sudden and sharp variations are localized. Typical examples are internal or boundary layers. When the number of degrees of freedom in the discretization process is not sufficient to ensure a fine resolution of the layers, some stabilization procedures are needed to avoid unpleasant oscillatory effects, without adding too much artificial viscosity to the scheme. In the field of finite elements, the streamline diffusion method, the Galerkin least-squares method, the bubble function approach, and other recent similar techniques provide excellent treatments of transport equations of elliptic type with small diffusive terms, referred to in fluid dynamics as advection-diffusion (or convection-diffusion) equations. Goals This book is an attempt to guide the reader in the construction of a computational code based on the spectral collocation method, using algebraic polynomials. The main topic is the approximation of elliptic type boundary-value partial differential equations in 2-D, with special attention to transport-diffusion equations, where the second-order diffusive terms are strongly dominated by the first-order advective terms. Applications will be considered especially in the case where nonlinear systems of partial differential equations can be reduced to a sequence of transport-diffusion equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektralmethode</subfield><subfield code="0">(DE-588)4224817-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kollokationsmethode</subfield><subfield code="0">(DE-588)4164696-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Advektion</subfield><subfield code="0">(DE-588)4206361-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Advektion</subfield><subfield code="0">(DE-588)4206361-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Kollokationsmethode</subfield><subfield code="0">(DE-588)4164696-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Spektralmethode</subfield><subfield code="0">(DE-588)4224817-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV011386476</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-59185-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858160</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422743 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642591853 9783540626497 |
issn | 1439-7358 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858160 |
oclc_num | 1184411538 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 215 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Lecture Notes in Computational Science and Engineering |
series2 | Lecture Notes in Computational Science and Engineering |
spelling | Funaro, Daniele Verfasser aut Spectral Elements for Transport-Dominated Equations by Daniele Funaro Berlin, Heidelberg Springer Berlin Heidelberg 1997 1 Online-Ressource (X, 215 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Computational Science and Engineering 1 1439-7358 In the last few years there has been a growing interest in the development of numerical techniques appropriate for the approximation of differential model problems presenting multiscale solutions. This is the case, for instance, with functions displaying a smooth behavior, except in certain regions where sudden and sharp variations are localized. Typical examples are internal or boundary layers. When the number of degrees of freedom in the discretization process is not sufficient to ensure a fine resolution of the layers, some stabilization procedures are needed to avoid unpleasant oscillatory effects, without adding too much artificial viscosity to the scheme. In the field of finite elements, the streamline diffusion method, the Galerkin least-squares method, the bubble function approach, and other recent similar techniques provide excellent treatments of transport equations of elliptic type with small diffusive terms, referred to in fluid dynamics as advection-diffusion (or convection-diffusion) equations. Goals This book is an attempt to guide the reader in the construction of a computational code based on the spectral collocation method, using algebraic polynomials. The main topic is the approximation of elliptic type boundary-value partial differential equations in 2-D, with special attention to transport-diffusion equations, where the second-order diffusive terms are strongly dominated by the first-order advective terms. Applications will be considered especially in the case where nonlinear systems of partial differential equations can be reduced to a sequence of transport-diffusion equations Mathematics Numerical analysis Physics Thermodynamics Engineering Numerical Analysis Complexity Ingenieurwissenschaften Mathematik Spektralmethode (DE-588)4224817-6 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Kollokationsmethode (DE-588)4164696-4 gnd rswk-swf Diffusion (DE-588)4012277-3 gnd rswk-swf Advektion (DE-588)4206361-9 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Advektion (DE-588)4206361-9 s Diffusion (DE-588)4012277-3 s Partielle Differentialgleichung (DE-588)4044779-0 s Randwertproblem (DE-588)4048395-2 s Kollokationsmethode (DE-588)4164696-4 s Spektralmethode (DE-588)4224817-6 s 1\p DE-604 Lecture Notes in Computational Science and Engineering 1 (DE-604)BV011386476 1 https://doi.org/10.1007/978-3-642-59185-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Funaro, Daniele Spectral Elements for Transport-Dominated Equations Lecture Notes in Computational Science and Engineering Mathematics Numerical analysis Physics Thermodynamics Engineering Numerical Analysis Complexity Ingenieurwissenschaften Mathematik Spektralmethode (DE-588)4224817-6 gnd Randwertproblem (DE-588)4048395-2 gnd Kollokationsmethode (DE-588)4164696-4 gnd Diffusion (DE-588)4012277-3 gnd Advektion (DE-588)4206361-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4224817-6 (DE-588)4048395-2 (DE-588)4164696-4 (DE-588)4012277-3 (DE-588)4206361-9 (DE-588)4044779-0 |
title | Spectral Elements for Transport-Dominated Equations |
title_auth | Spectral Elements for Transport-Dominated Equations |
title_exact_search | Spectral Elements for Transport-Dominated Equations |
title_full | Spectral Elements for Transport-Dominated Equations by Daniele Funaro |
title_fullStr | Spectral Elements for Transport-Dominated Equations by Daniele Funaro |
title_full_unstemmed | Spectral Elements for Transport-Dominated Equations by Daniele Funaro |
title_short | Spectral Elements for Transport-Dominated Equations |
title_sort | spectral elements for transport dominated equations |
topic | Mathematics Numerical analysis Physics Thermodynamics Engineering Numerical Analysis Complexity Ingenieurwissenschaften Mathematik Spektralmethode (DE-588)4224817-6 gnd Randwertproblem (DE-588)4048395-2 gnd Kollokationsmethode (DE-588)4164696-4 gnd Diffusion (DE-588)4012277-3 gnd Advektion (DE-588)4206361-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Numerical analysis Physics Thermodynamics Engineering Numerical Analysis Complexity Ingenieurwissenschaften Mathematik Spektralmethode Randwertproblem Kollokationsmethode Diffusion Advektion Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-3-642-59185-3 |
volume_link | (DE-604)BV011386476 |
work_keys_str_mv | AT funarodaniele spectralelementsfortransportdominatedequations |