p-adic Numbers: An Introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1997
|
Ausgabe: | Second Edition |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the course of their undergraduate careers, most mathematics majors see little beyond "standard mathematics:" basic real and complex analysis, ab stract algebra, some differential geometry, etc. There are few adventures in other territories, and few opportunities to visit some of the more exotic cor ners of mathematics. The goal of this book is to offer such an opportunity, by way of a visit to the p-adic universe. Such a visit offers a glimpse of a part of mathematics which is both important and fun, and which also is something of a meeting point between algebra and analysis. Over the last century, p-adic numbers and p-adic analysis have come to playa central role in modern number theory. This importance comes from the fact that they afford a natural and powerful language for talking about congruences between integers, and allow the use of methods borrowed from calculus and analysis for studying such problems. More recently, p-adic num bers have shown up in other areas of mathematics, and even in physics |
Beschreibung: | 1 Online-Ressource (VI, 306p. 15 illus) |
ISBN: | 9783642590580 9783540629115 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-642-59058-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422738 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783642590580 |c Online |9 978-3-642-59058-0 | ||
020 | |a 9783540629115 |c Print |9 978-3-540-62911-5 | ||
024 | 7 | |a 10.1007/978-3-642-59058-0 |2 doi | |
035 | |a (OCoLC)1165508063 | ||
035 | |a (DE-599)BVBBV042422738 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gouvêa, Fernando Q. |e Verfasser |4 aut | |
245 | 1 | 0 | |a p-adic Numbers |b An Introduction |c by Fernando Q. Gouvêa |
250 | |a Second Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1997 | |
300 | |a 1 Online-Ressource (VI, 306p. 15 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a In the course of their undergraduate careers, most mathematics majors see little beyond "standard mathematics:" basic real and complex analysis, ab stract algebra, some differential geometry, etc. There are few adventures in other territories, and few opportunities to visit some of the more exotic cor ners of mathematics. The goal of this book is to offer such an opportunity, by way of a visit to the p-adic universe. Such a visit offers a glimpse of a part of mathematics which is both important and fun, and which also is something of a meeting point between algebra and analysis. Over the last century, p-adic numbers and p-adic analysis have come to playa central role in modern number theory. This importance comes from the fact that they afford a natural and powerful language for talking about congruences between integers, and allow the use of methods borrowed from calculus and analysis for studying such problems. More recently, p-adic num bers have shown up in other areas of mathematics, and even in physics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a p-adische Zahl |0 (DE-588)4044292-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a p-adische Zahl |0 (DE-588)4044292-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-59058-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858155 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097578086400 |
---|---|
any_adam_object | |
author | Gouvêa, Fernando Q. |
author_facet | Gouvêa, Fernando Q. |
author_role | aut |
author_sort | Gouvêa, Fernando Q. |
author_variant | f q g fq fqg |
building | Verbundindex |
bvnumber | BV042422738 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165508063 (DE-599)BVBBV042422738 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-59058-0 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02571nmm a2200469zc 4500</leader><controlfield tag="001">BV042422738</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642590580</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-59058-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540629115</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-62911-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-59058-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165508063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422738</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gouvêa, Fernando Q.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">p-adic Numbers</subfield><subfield code="b">An Introduction</subfield><subfield code="c">by Fernando Q. Gouvêa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 306p. 15 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the course of their undergraduate careers, most mathematics majors see little beyond "standard mathematics:" basic real and complex analysis, ab stract algebra, some differential geometry, etc. There are few adventures in other territories, and few opportunities to visit some of the more exotic cor ners of mathematics. The goal of this book is to offer such an opportunity, by way of a visit to the p-adic universe. Such a visit offers a glimpse of a part of mathematics which is both important and fun, and which also is something of a meeting point between algebra and analysis. Over the last century, p-adic numbers and p-adic analysis have come to playa central role in modern number theory. This importance comes from the fact that they afford a natural and powerful language for talking about congruences between integers, and allow the use of methods borrowed from calculus and analysis for studying such problems. More recently, p-adic num bers have shown up in other areas of mathematics, and even in physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">p-adische Zahl</subfield><subfield code="0">(DE-588)4044292-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-59058-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858155</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422738 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642590580 9783540629115 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858155 |
oclc_num | 1165508063 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 306p. 15 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Gouvêa, Fernando Q. Verfasser aut p-adic Numbers An Introduction by Fernando Q. Gouvêa Second Edition Berlin, Heidelberg Springer Berlin Heidelberg 1997 1 Online-Ressource (VI, 306p. 15 illus) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 In the course of their undergraduate careers, most mathematics majors see little beyond "standard mathematics:" basic real and complex analysis, ab stract algebra, some differential geometry, etc. There are few adventures in other territories, and few opportunities to visit some of the more exotic cor ners of mathematics. The goal of this book is to offer such an opportunity, by way of a visit to the p-adic universe. Such a visit offers a glimpse of a part of mathematics which is both important and fun, and which also is something of a meeting point between algebra and analysis. Over the last century, p-adic numbers and p-adic analysis have come to playa central role in modern number theory. This importance comes from the fact that they afford a natural and powerful language for talking about congruences between integers, and allow the use of methods borrowed from calculus and analysis for studying such problems. More recently, p-adic num bers have shown up in other areas of mathematics, and even in physics Mathematics Number theory Number Theory Mathematik p-adische Zahl (DE-588)4044292-5 gnd rswk-swf p-adische Zahl (DE-588)4044292-5 s 1\p DE-604 https://doi.org/10.1007/978-3-642-59058-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gouvêa, Fernando Q. p-adic Numbers An Introduction Mathematics Number theory Number Theory Mathematik p-adische Zahl (DE-588)4044292-5 gnd |
subject_GND | (DE-588)4044292-5 |
title | p-adic Numbers An Introduction |
title_auth | p-adic Numbers An Introduction |
title_exact_search | p-adic Numbers An Introduction |
title_full | p-adic Numbers An Introduction by Fernando Q. Gouvêa |
title_fullStr | p-adic Numbers An Introduction by Fernando Q. Gouvêa |
title_full_unstemmed | p-adic Numbers An Introduction by Fernando Q. Gouvêa |
title_short | p-adic Numbers |
title_sort | p adic numbers an introduction |
title_sub | An Introduction |
topic | Mathematics Number theory Number Theory Mathematik p-adische Zahl (DE-588)4044292-5 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik p-adische Zahl |
url | https://doi.org/10.1007/978-3-642-59058-0 |
work_keys_str_mv | AT gouveafernandoq padicnumbersanintroduction |