Commutative Harmonic Analysis II: Group Methods in Commutative Harmonic Analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1998
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
25 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Classical harmonic analysis is an important part of modern physics and mathematics, comparable in its significance with calculus. Created in the 18th and 19th centuries as a distinct mathematical discipline it continued to develop (and still does), conquering new unexpected areas and producing impressive applications to a multitude of problems, old and new, ranging from arithmetic to optics, from geometry to quantum mechanics, not to mention analysis and differential equations. The power of group theoretic ideology is successfully illustrated by this wide range of topics. It is widely understood now that the explanation of this miraculous power stems from group theoretic ideas underlying practically everything in harmonic analysis. This volume is an unusual combination of the general and abstract group theoretic approach with a wealth of very concrete topics attractive to everybody interested in mathematics. Mathematical literature on harmonic analysis abounds in books of more or less abstract or concrete kind, but the lucky combination as in the present volume can hardly be found in any monograph. This book will be very useful to a wide circle of readers, including mathematicians, theoretical physicists and engineers |
Beschreibung: | 1 Online-Ressource (VIII, 328 p) |
ISBN: | 9783642589461 9783642638008 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-642-58946-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422735 | ||
003 | DE-604 | ||
005 | 20160524 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9783642589461 |c Online |9 978-3-642-58946-1 | ||
020 | |a 9783642638008 |c Print |9 978-3-642-63800-8 | ||
024 | 7 | |a 10.1007/978-3-642-58946-1 |2 doi | |
035 | |a (OCoLC)863766115 | ||
035 | |a (DE-599)BVBBV042422735 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Havin, V. P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Commutative Harmonic Analysis II |b Group Methods in Commutative Harmonic Analysis |c edited by V. P. Havin, N. K. Nikolski |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1998 | |
300 | |a 1 Online-Ressource (VIII, 328 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 25 |x 0938-0396 | |
500 | |a Classical harmonic analysis is an important part of modern physics and mathematics, comparable in its significance with calculus. Created in the 18th and 19th centuries as a distinct mathematical discipline it continued to develop (and still does), conquering new unexpected areas and producing impressive applications to a multitude of problems, old and new, ranging from arithmetic to optics, from geometry to quantum mechanics, not to mention analysis and differential equations. The power of group theoretic ideology is successfully illustrated by this wide range of topics. It is widely understood now that the explanation of this miraculous power stems from group theoretic ideas underlying practically everything in harmonic analysis. This volume is an unusual combination of the general and abstract group theoretic approach with a wealth of very concrete topics attractive to everybody interested in mathematics. Mathematical literature on harmonic analysis abounds in books of more or less abstract or concrete kind, but the lucky combination as in the present volume can hardly be found in any monograph. This book will be very useful to a wide circle of readers, including mathematicians, theoretical physicists and engineers | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Nikolski, Nikolai K. |d 1940- |e Sonstige |0 (DE-588)12430382X |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-58946-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858152 |
Datensatz im Suchindex
_version_ | 1804153097589620736 |
---|---|
any_adam_object | |
author | Havin, V. P. |
author_GND | (DE-588)12430382X |
author_facet | Havin, V. P. |
author_role | aut |
author_sort | Havin, V. P. |
author_variant | v p h vp vph |
building | Verbundindex |
bvnumber | BV042422735 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863766115 (DE-599)BVBBV042422735 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-58946-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02682nmm a2200421zcb4500</leader><controlfield tag="001">BV042422735</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160524 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642589461</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-58946-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642638008</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-63800-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-58946-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863766115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422735</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Havin, V. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutative Harmonic Analysis II</subfield><subfield code="b">Group Methods in Commutative Harmonic Analysis</subfield><subfield code="c">edited by V. P. Havin, N. K. Nikolski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 328 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">25</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Classical harmonic analysis is an important part of modern physics and mathematics, comparable in its significance with calculus. Created in the 18th and 19th centuries as a distinct mathematical discipline it continued to develop (and still does), conquering new unexpected areas and producing impressive applications to a multitude of problems, old and new, ranging from arithmetic to optics, from geometry to quantum mechanics, not to mention analysis and differential equations. The power of group theoretic ideology is successfully illustrated by this wide range of topics. It is widely understood now that the explanation of this miraculous power stems from group theoretic ideas underlying practically everything in harmonic analysis. This volume is an unusual combination of the general and abstract group theoretic approach with a wealth of very concrete topics attractive to everybody interested in mathematics. Mathematical literature on harmonic analysis abounds in books of more or less abstract or concrete kind, but the lucky combination as in the present volume can hardly be found in any monograph. This book will be very useful to a wide circle of readers, including mathematicians, theoretical physicists and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikolski, Nikolai K.</subfield><subfield code="d">1940-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)12430382X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-58946-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858152</subfield></datafield></record></collection> |
id | DE-604.BV042422735 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642589461 9783642638008 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858152 |
oclc_num | 863766115 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 328 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Havin, V. P. Verfasser aut Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis edited by V. P. Havin, N. K. Nikolski Berlin, Heidelberg Springer Berlin Heidelberg 1998 1 Online-Ressource (VIII, 328 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 25 0938-0396 Classical harmonic analysis is an important part of modern physics and mathematics, comparable in its significance with calculus. Created in the 18th and 19th centuries as a distinct mathematical discipline it continued to develop (and still does), conquering new unexpected areas and producing impressive applications to a multitude of problems, old and new, ranging from arithmetic to optics, from geometry to quantum mechanics, not to mention analysis and differential equations. The power of group theoretic ideology is successfully illustrated by this wide range of topics. It is widely understood now that the explanation of this miraculous power stems from group theoretic ideas underlying practically everything in harmonic analysis. This volume is an unusual combination of the general and abstract group theoretic approach with a wealth of very concrete topics attractive to everybody interested in mathematics. Mathematical literature on harmonic analysis abounds in books of more or less abstract or concrete kind, but the lucky combination as in the present volume can hardly be found in any monograph. This book will be very useful to a wide circle of readers, including mathematicians, theoretical physicists and engineers Mathematics Global analysis (Mathematics) Analysis Mathematik Nikolski, Nikolai K. 1940- Sonstige (DE-588)12430382X oth https://doi.org/10.1007/978-3-642-58946-1 Verlag Volltext |
spellingShingle | Havin, V. P. Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis Mathematics Global analysis (Mathematics) Analysis Mathematik |
title | Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis |
title_auth | Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis |
title_exact_search | Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis |
title_full | Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis edited by V. P. Havin, N. K. Nikolski |
title_fullStr | Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis edited by V. P. Havin, N. K. Nikolski |
title_full_unstemmed | Commutative Harmonic Analysis II Group Methods in Commutative Harmonic Analysis edited by V. P. Havin, N. K. Nikolski |
title_short | Commutative Harmonic Analysis II |
title_sort | commutative harmonic analysis ii group methods in commutative harmonic analysis |
title_sub | Group Methods in Commutative Harmonic Analysis |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik |
url | https://doi.org/10.1007/978-3-642-58946-1 |
work_keys_str_mv | AT havinvp commutativeharmonicanalysisiigroupmethodsincommutativeharmonicanalysis AT nikolskinikolaik commutativeharmonicanalysisiigroupmethodsincommutativeharmonicanalysis |