Commutative Harmonic Analysis III: Generalized Functions. Application
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1995
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
72 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This EMS volume shows the great power provided by modern harmonic analysis, not only in mathematics, but also in mathematical physics and engineering. Aimed at a reader who has learned the principles of harmonic analysis, this book is intended to provide a variety of perspectives on this important classical subject. The authors have written an outstanding book which distinguishes itself by the authors' excellent expository style. It can be useful for the expert in one area of harmonic analysis who wishes to obtain broader knowledge of other aspects of the subject and also by graduate students in other areas of mathematics who wish a general but rigorous introduction to the subject |
Beschreibung: | 1 Online-Ressource (VII, 268 p) |
ISBN: | 9783642578540 9783642633805 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-642-57854-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422685 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783642578540 |c Online |9 978-3-642-57854-0 | ||
020 | |a 9783642633805 |c Print |9 978-3-642-63380-5 | ||
024 | 7 | |a 10.1007/978-3-642-57854-0 |2 doi | |
035 | |a (OCoLC)863752205 | ||
035 | |a (DE-599)BVBBV042422685 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Havin, V. P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Commutative Harmonic Analysis III |b Generalized Functions. Application |c edited by V. P. Havin, N. K. Nikol’skij |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1995 | |
300 | |a 1 Online-Ressource (VII, 268 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 72 |x 0938-0396 | |
500 | |a This EMS volume shows the great power provided by modern harmonic analysis, not only in mathematics, but also in mathematical physics and engineering. Aimed at a reader who has learned the principles of harmonic analysis, this book is intended to provide a variety of perspectives on this important classical subject. The authors have written an outstanding book which distinguishes itself by the authors' excellent expository style. It can be useful for the expert in one area of harmonic analysis who wishes to obtain broader knowledge of other aspects of the subject and also by graduate students in other areas of mathematics who wish a general but rigorous introduction to the subject | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Acoustics | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
700 | 1 | |a Nikol’skij, N. K. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-57854-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858102 |
Datensatz im Suchindex
_version_ | 1804153097479520256 |
---|---|
any_adam_object | |
author | Havin, V. P. |
author_facet | Havin, V. P. |
author_role | aut |
author_sort | Havin, V. P. |
author_variant | v p h vp vph |
building | Verbundindex |
bvnumber | BV042422685 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863752205 (DE-599)BVBBV042422685 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-57854-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02412nmm a2200517zcb4500</leader><controlfield tag="001">BV042422685</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642578540</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-57854-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642633805</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-63380-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-57854-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863752205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422685</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Havin, V. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commutative Harmonic Analysis III</subfield><subfield code="b">Generalized Functions. Application</subfield><subfield code="c">edited by V. P. Havin, N. K. Nikol’skij</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 268 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">72</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This EMS volume shows the great power provided by modern harmonic analysis, not only in mathematics, but also in mathematical physics and engineering. Aimed at a reader who has learned the principles of harmonic analysis, this book is intended to provide a variety of perspectives on this important classical subject. The authors have written an outstanding book which distinguishes itself by the authors' excellent expository style. It can be useful for the expert in one area of harmonic analysis who wishes to obtain broader knowledge of other aspects of the subject and also by graduate students in other areas of mathematics who wish a general but rigorous introduction to the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikol’skij, N. K.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-57854-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858102</subfield></datafield></record></collection> |
id | DE-604.BV042422685 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642578540 9783642633805 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858102 |
oclc_num | 863752205 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 268 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Havin, V. P. Verfasser aut Commutative Harmonic Analysis III Generalized Functions. Application edited by V. P. Havin, N. K. Nikol’skij Berlin, Heidelberg Springer Berlin Heidelberg 1995 1 Online-Ressource (VII, 268 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 72 0938-0396 This EMS volume shows the great power provided by modern harmonic analysis, not only in mathematics, but also in mathematical physics and engineering. Aimed at a reader who has learned the principles of harmonic analysis, this book is intended to provide a variety of perspectives on this important classical subject. The authors have written an outstanding book which distinguishes itself by the authors' excellent expository style. It can be useful for the expert in one area of harmonic analysis who wishes to obtain broader knowledge of other aspects of the subject and also by graduate students in other areas of mathematics who wish a general but rigorous introduction to the subject Mathematics Topological Groups Global analysis (Mathematics) Mathematical physics Acoustics Topological Groups, Lie Groups Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik Nikol’skij, N. K. Sonstige oth https://doi.org/10.1007/978-3-642-57854-0 Verlag Volltext |
spellingShingle | Havin, V. P. Commutative Harmonic Analysis III Generalized Functions. Application Mathematics Topological Groups Global analysis (Mathematics) Mathematical physics Acoustics Topological Groups, Lie Groups Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
title | Commutative Harmonic Analysis III Generalized Functions. Application |
title_auth | Commutative Harmonic Analysis III Generalized Functions. Application |
title_exact_search | Commutative Harmonic Analysis III Generalized Functions. Application |
title_full | Commutative Harmonic Analysis III Generalized Functions. Application edited by V. P. Havin, N. K. Nikol’skij |
title_fullStr | Commutative Harmonic Analysis III Generalized Functions. Application edited by V. P. Havin, N. K. Nikol’skij |
title_full_unstemmed | Commutative Harmonic Analysis III Generalized Functions. Application edited by V. P. Havin, N. K. Nikol’skij |
title_short | Commutative Harmonic Analysis III |
title_sort | commutative harmonic analysis iii generalized functions application |
title_sub | Generalized Functions. Application |
topic | Mathematics Topological Groups Global analysis (Mathematics) Mathematical physics Acoustics Topological Groups, Lie Groups Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
topic_facet | Mathematics Topological Groups Global analysis (Mathematics) Mathematical physics Acoustics Topological Groups, Lie Groups Analysis Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
url | https://doi.org/10.1007/978-3-642-57854-0 |
work_keys_str_mv | AT havinvp commutativeharmonicanalysisiiigeneralizedfunctionsapplication AT nikolskijnk commutativeharmonicanalysisiiigeneralizedfunctionsapplication |