Complex Semisimple Lie Algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These short notes, already well-known in their original French edition, give the basic theory of semisimple Lie algebras over the complex numbers, including classification theorem. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and linear representations. The last chapter discusses the connection between Lie algebras, complex groups and compact groups; it is intended to guide the reader towards further study |
Beschreibung: | 1 Online-Ressource (IX, 74 p) |
ISBN: | 9783642568848 9783642632228 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-642-56884-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422660 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783642568848 |c Online |9 978-3-642-56884-8 | ||
020 | |a 9783642632228 |c Print |9 978-3-642-63222-8 | ||
024 | 7 | |a 10.1007/978-3-642-56884-8 |2 doi | |
035 | |a (OCoLC)1184268580 | ||
035 | |a (DE-599)BVBBV042422660 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.482 |2 23 | |
082 | 0 | |a 512.55 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Serre, Jean-Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex Semisimple Lie Algebras |c by Jean-Pierre Serre |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2001 | |
300 | |a 1 Online-Ressource (IX, 74 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a These short notes, already well-known in their original French edition, give the basic theory of semisimple Lie algebras over the complex numbers, including classification theorem. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and linear representations. The last chapter discusses the connection between Lie algebras, complex groups and compact groups; it is intended to guide the reader towards further study | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Komplexe Zahl |0 (DE-588)4128698-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbeinfache Lie-Algebra |0 (DE-588)4193986-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Halbeinfache Lie-Algebra |0 (DE-588)4193986-4 |D s |
689 | 0 | 1 | |a Komplexe Zahl |0 (DE-588)4128698-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-56884-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858077 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097420800000 |
---|---|
any_adam_object | |
author | Serre, Jean-Pierre |
author_facet | Serre, Jean-Pierre |
author_role | aut |
author_sort | Serre, Jean-Pierre |
author_variant | j p s jps |
building | Verbundindex |
bvnumber | BV042422660 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184268580 (DE-599)BVBBV042422660 |
dewey-full | 512.482 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 512.55 |
dewey-search | 512.482 512.55 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-56884-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02473nmm a2200541zc 4500</leader><controlfield tag="001">BV042422660</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642568848</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-56884-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642632228</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-63222-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-56884-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184268580</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422660</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Serre, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Semisimple Lie Algebras</subfield><subfield code="c">by Jean-Pierre Serre</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 74 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These short notes, already well-known in their original French edition, give the basic theory of semisimple Lie algebras over the complex numbers, including classification theorem. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and linear representations. The last chapter discusses the connection between Lie algebras, complex groups and compact groups; it is intended to guide the reader towards further study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Zahl</subfield><subfield code="0">(DE-588)4128698-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbeinfache Lie-Algebra</subfield><subfield code="0">(DE-588)4193986-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbeinfache Lie-Algebra</subfield><subfield code="0">(DE-588)4193986-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexe Zahl</subfield><subfield code="0">(DE-588)4128698-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-56884-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858077</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422660 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642568848 9783642632228 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858077 |
oclc_num | 1184268580 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 74 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Serre, Jean-Pierre Verfasser aut Complex Semisimple Lie Algebras by Jean-Pierre Serre Berlin, Heidelberg Springer Berlin Heidelberg 2001 1 Online-Ressource (IX, 74 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 These short notes, already well-known in their original French edition, give the basic theory of semisimple Lie algebras over the complex numbers, including classification theorem. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and linear representations. The last chapter discusses the connection between Lie algebras, complex groups and compact groups; it is intended to guide the reader towards further study Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl (DE-588)4128698-4 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Halbeinfache Lie-Algebra (DE-588)4193986-4 gnd rswk-swf Halbeinfache Lie-Algebra (DE-588)4193986-4 s Komplexe Zahl (DE-588)4128698-4 s 1\p DE-604 Lie-Algebra (DE-588)4130355-6 s 2\p DE-604 https://doi.org/10.1007/978-3-642-56884-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Serre, Jean-Pierre Complex Semisimple Lie Algebras Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl (DE-588)4128698-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Halbeinfache Lie-Algebra (DE-588)4193986-4 gnd |
subject_GND | (DE-588)4128698-4 (DE-588)4130355-6 (DE-588)4193986-4 |
title | Complex Semisimple Lie Algebras |
title_auth | Complex Semisimple Lie Algebras |
title_exact_search | Complex Semisimple Lie Algebras |
title_full | Complex Semisimple Lie Algebras by Jean-Pierre Serre |
title_fullStr | Complex Semisimple Lie Algebras by Jean-Pierre Serre |
title_full_unstemmed | Complex Semisimple Lie Algebras by Jean-Pierre Serre |
title_short | Complex Semisimple Lie Algebras |
title_sort | complex semisimple lie algebras |
topic | Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl (DE-588)4128698-4 gnd Lie-Algebra (DE-588)4130355-6 gnd Halbeinfache Lie-Algebra (DE-588)4193986-4 gnd |
topic_facet | Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Komplexe Zahl Lie-Algebra Halbeinfache Lie-Algebra |
url | https://doi.org/10.1007/978-3-642-56884-8 |
work_keys_str_mv | AT serrejeanpierre complexsemisimpleliealgebras |