Numerical Methods in Computational Electrodynamics: Linear Systems in Practical Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001
|
Schriftenreihe: | Lecture Notes in Computational Science and Engineering
12 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | treated in more detail. They are just specimen of larger classes of schemes. Essentially, we have to distinguish between semi-analytical methods, discretization methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis functions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary conditions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some applications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4) |
Beschreibung: | 1 Online-Ressource (XIII, 375p. 173 illus., 65 illus. in color) |
ISBN: | 9783642568022 9783540676294 |
ISSN: | 1439-7358 |
DOI: | 10.1007/978-3-642-56802-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422658 | ||
003 | DE-604 | ||
005 | 20170921 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783642568022 |c Online |9 978-3-642-56802-2 | ||
020 | |a 9783540676294 |c Print |9 978-3-540-67629-4 | ||
024 | 7 | |a 10.1007/978-3-642-56802-2 |2 doi | |
035 | |a (OCoLC)1184407780 | ||
035 | |a (DE-599)BVBBV042422658 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rienen, Ursula |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Methods in Computational Electrodynamics |b Linear Systems in Practical Applications |c by Ursula Rienen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2001 | |
300 | |a 1 Online-Ressource (XIII, 375p. 173 illus., 65 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Computational Science and Engineering |v 12 |x 1439-7358 | |
500 | |a treated in more detail. They are just specimen of larger classes of schemes. Essentially, we have to distinguish between semi-analytical methods, discretization methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis functions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary conditions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some applications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Particle acceleration | |
650 | 4 | |a Engineering | |
650 | 4 | |a Computer engineering | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Particle Acceleration and Detection, Beam Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrodynamik |0 (DE-588)4014251-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrodynamik |0 (DE-588)4014251-6 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Lecture Notes in Computational Science and Engineering |v 12 |w (DE-604)BV011386476 |9 12 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-56802-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858075 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097413459968 |
---|---|
any_adam_object | |
author | Rienen, Ursula |
author_facet | Rienen, Ursula |
author_role | aut |
author_sort | Rienen, Ursula |
author_variant | u r ur |
building | Verbundindex |
bvnumber | BV042422658 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184407780 (DE-599)BVBBV042422658 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-56802-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03841nmm a2200589zcb4500</leader><controlfield tag="001">BV042422658</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170921 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642568022</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-56802-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540676294</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-67629-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-56802-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184407780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422658</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rienen, Ursula</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Methods in Computational Electrodynamics</subfield><subfield code="b">Linear Systems in Practical Applications</subfield><subfield code="c">by Ursula Rienen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 375p. 173 illus., 65 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">12</subfield><subfield code="x">1439-7358</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">treated in more detail. They are just specimen of larger classes of schemes. Essentially, we have to distinguish between semi-analytical methods, discretization methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis functions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary conditions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some applications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle acceleration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle Acceleration and Detection, Beam Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrodynamik</subfield><subfield code="0">(DE-588)4014251-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrodynamik</subfield><subfield code="0">(DE-588)4014251-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">12</subfield><subfield code="w">(DE-604)BV011386476</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-56802-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858075</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422658 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642568022 9783540676294 |
issn | 1439-7358 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858075 |
oclc_num | 1184407780 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 375p. 173 illus., 65 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Lecture Notes in Computational Science and Engineering |
series2 | Lecture Notes in Computational Science and Engineering |
spelling | Rienen, Ursula Verfasser aut Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications by Ursula Rienen Berlin, Heidelberg Springer Berlin Heidelberg 2001 1 Online-Ressource (XIII, 375p. 173 illus., 65 illus. in color) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Computational Science and Engineering 12 1439-7358 treated in more detail. They are just specimen of larger classes of schemes. Essentially, we have to distinguish between semi-analytical methods, discretization methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis functions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary conditions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some applications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4) Mathematics Numerical analysis Particle acceleration Engineering Computer engineering Numerical Analysis Computational Intelligence Particle Acceleration and Detection, Beam Physics Theoretical, Mathematical and Computational Physics Electrical Engineering Ingenieurwissenschaften Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Elektrodynamik (DE-588)4014251-6 gnd rswk-swf Elektrodynamik (DE-588)4014251-6 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Lecture Notes in Computational Science and Engineering 12 (DE-604)BV011386476 12 https://doi.org/10.1007/978-3-642-56802-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rienen, Ursula Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications Lecture Notes in Computational Science and Engineering Mathematics Numerical analysis Particle acceleration Engineering Computer engineering Numerical Analysis Computational Intelligence Particle Acceleration and Detection, Beam Physics Theoretical, Mathematical and Computational Physics Electrical Engineering Ingenieurwissenschaften Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Elektrodynamik (DE-588)4014251-6 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4014251-6 |
title | Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications |
title_auth | Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications |
title_exact_search | Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications |
title_full | Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications by Ursula Rienen |
title_fullStr | Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications by Ursula Rienen |
title_full_unstemmed | Numerical Methods in Computational Electrodynamics Linear Systems in Practical Applications by Ursula Rienen |
title_short | Numerical Methods in Computational Electrodynamics |
title_sort | numerical methods in computational electrodynamics linear systems in practical applications |
title_sub | Linear Systems in Practical Applications |
topic | Mathematics Numerical analysis Particle acceleration Engineering Computer engineering Numerical Analysis Computational Intelligence Particle Acceleration and Detection, Beam Physics Theoretical, Mathematical and Computational Physics Electrical Engineering Ingenieurwissenschaften Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Elektrodynamik (DE-588)4014251-6 gnd |
topic_facet | Mathematics Numerical analysis Particle acceleration Engineering Computer engineering Numerical Analysis Computational Intelligence Particle Acceleration and Detection, Beam Physics Theoretical, Mathematical and Computational Physics Electrical Engineering Ingenieurwissenschaften Mathematik Numerisches Verfahren Elektrodynamik |
url | https://doi.org/10.1007/978-3-642-56802-2 |
volume_link | (DE-604)BV011386476 |
work_keys_str_mv | AT rienenursula numericalmethodsincomputationalelectrodynamicslinearsystemsinpracticalapplications |