Meshfree Methods for Partial Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Lecture Notes in Computational Science and Engineering
26 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models ar often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretization is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDE from a Lagrangian point of view and the coupling of particle models. The coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering |
Beschreibung: | 1 Online-Ressource (IX, 471 p) |
ISBN: | 9783642561030 9783540438915 |
ISSN: | 1439-7358 |
DOI: | 10.1007/978-3-642-56103-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422631 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783642561030 |c Online |9 978-3-642-56103-0 | ||
020 | |a 9783540438915 |c Print |9 978-3-540-43891-5 | ||
024 | 7 | |a 10.1007/978-3-642-56103-0 |2 doi | |
035 | |a (OCoLC)612089187 | ||
035 | |a (DE-599)BVBBV042422631 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Griebel, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Meshfree Methods for Partial Differential Equations |c edited by Michael Griebel, Marc Alexander Schweitzer |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (IX, 471 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Computational Science and Engineering |v 26 |x 1439-7358 | |
500 | |a Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models ar often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretization is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDE from a Lagrangian point of view and the coupling of particle models. The coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2001 |z Bonn |2 gnd-content | |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Schweitzer, Marc Alexander |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-56103-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858048 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097359982592 |
---|---|
any_adam_object | |
author | Griebel, Michael |
author_facet | Griebel, Michael |
author_role | aut |
author_sort | Griebel, Michael |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV042422631 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)612089187 (DE-599)BVBBV042422631 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-56103-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03452nmm a2200601zcb4500</leader><controlfield tag="001">BV042422631</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642561030</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-56103-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540438915</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-43891-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-56103-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)612089187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422631</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Griebel, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Meshfree Methods for Partial Differential Equations</subfield><subfield code="c">edited by Michael Griebel, Marc Alexander Schweitzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 471 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">26</subfield><subfield code="x">1439-7358</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models ar often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretization is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDE from a Lagrangian point of view and the coupling of particle models. The coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2001</subfield><subfield code="z">Bonn</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schweitzer, Marc Alexander</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-56103-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858048</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2001 Bonn gnd-content |
genre_facet | Konferenzschrift 2001 Bonn |
id | DE-604.BV042422631 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642561030 9783540438915 |
issn | 1439-7358 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858048 |
oclc_num | 612089187 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 471 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Computational Science and Engineering |
spelling | Griebel, Michael Verfasser aut Meshfree Methods for Partial Differential Equations edited by Michael Griebel, Marc Alexander Schweitzer Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (IX, 471 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Computational Science and Engineering 26 1439-7358 Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models ar often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretization is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDE from a Lagrangian point of view and the coupling of particle models. The coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering Mathematics Functional equations Differential equations, partial Computer science / Mathematics Engineering mathematics Partial Differential Equations Difference and Functional Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2001 Bonn gnd-content Partielle Differentialgleichung (DE-588)4044779-0 s Numerisches Verfahren (DE-588)4128130-5 s 2\p DE-604 Schweitzer, Marc Alexander Sonstige oth https://doi.org/10.1007/978-3-642-56103-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Griebel, Michael Meshfree Methods for Partial Differential Equations Mathematics Functional equations Differential equations, partial Computer science / Mathematics Engineering mathematics Partial Differential Equations Difference and Functional Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4044779-0 (DE-588)1071861417 |
title | Meshfree Methods for Partial Differential Equations |
title_auth | Meshfree Methods for Partial Differential Equations |
title_exact_search | Meshfree Methods for Partial Differential Equations |
title_full | Meshfree Methods for Partial Differential Equations edited by Michael Griebel, Marc Alexander Schweitzer |
title_fullStr | Meshfree Methods for Partial Differential Equations edited by Michael Griebel, Marc Alexander Schweitzer |
title_full_unstemmed | Meshfree Methods for Partial Differential Equations edited by Michael Griebel, Marc Alexander Schweitzer |
title_short | Meshfree Methods for Partial Differential Equations |
title_sort | meshfree methods for partial differential equations |
topic | Mathematics Functional equations Differential equations, partial Computer science / Mathematics Engineering mathematics Partial Differential Equations Difference and Functional Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Functional equations Differential equations, partial Computer science / Mathematics Engineering mathematics Partial Differential Equations Difference and Functional Equations Computational Mathematics and Numerical Analysis Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren Partielle Differentialgleichung Konferenzschrift 2001 Bonn |
url | https://doi.org/10.1007/978-3-642-56103-0 |
work_keys_str_mv | AT griebelmichael meshfreemethodsforpartialdifferentialequations AT schweitzermarcalexander meshfreemethodsforpartialdifferentialequations |