Linear Regression:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Lecture Notes in Statistics
175 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In linear regression the ordinary least squares estimator plays a central role and sometimes one may get the impression that it is the only reasonable and applicable estimator available. Nonetheless, there exists a variety of alternatives, proving useful in specific situations. Purpose and Scope. This book aims at presenting a comprehensive survey of different point estimation methods in linear regression, along with the theoretical background on a advanced courses level. Besides its possible use as a companion for specific courses, it should be helpful for purposes of further reading, giving detailed explanations on many topics in this field. Numerical examples and graphics will aid to deepen the insight into the specifics of the presented methods. For the purpose of self-containment, the basic theory of linear regression models and least squares is presented. The fundamentals of decision theory and matrix algebra are also included. Some prior basic knowledge, however, appears to be necessary for easy reading and understanding |
Beschreibung: | 1 Online-Ressource (XII, 394p) |
ISBN: | 9783642558641 9783540401780 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-3-642-55864-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422620 | ||
003 | DE-604 | ||
005 | 20230508 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783642558641 |c Online |9 978-3-642-55864-1 | ||
020 | |a 9783540401780 |c Print |9 978-3-540-40178-0 | ||
024 | 7 | |a 10.1007/978-3-642-55864-1 |2 doi | |
035 | |a (OCoLC)869855157 | ||
035 | |a (DE-599)BVBBV042422620 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Groß, Jürgen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear Regression |c by Jürgen Groß |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XII, 394p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Statistics |v 175 |x 0930-0325 | |
500 | |a In linear regression the ordinary least squares estimator plays a central role and sometimes one may get the impression that it is the only reasonable and applicable estimator available. Nonetheless, there exists a variety of alternatives, proving useful in specific situations. Purpose and Scope. This book aims at presenting a comprehensive survey of different point estimation methods in linear regression, along with the theoretical background on a advanced courses level. Besides its possible use as a companion for specific courses, it should be helpful for purposes of further reading, giving detailed explanations on many topics in this field. Numerical examples and graphics will aid to deepen the insight into the specifics of the presented methods. For the purpose of self-containment, the basic theory of linear regression models and least squares is presented. The fundamentals of decision theory and matrix algebra are also included. Some prior basic knowledge, however, appears to be necessary for easy reading and understanding | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Lineare Regression |0 (DE-588)4167709-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Regression |0 (DE-588)4167709-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Lecture Notes in Statistics |v 175 |w (DE-604)BV036592911 |9 175 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-55864-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858037 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097310699520 |
---|---|
any_adam_object | |
author | Groß, Jürgen |
author_facet | Groß, Jürgen |
author_role | aut |
author_sort | Groß, Jürgen |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV042422620 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869855157 (DE-599)BVBBV042422620 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-55864-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02647nmm a2200469zcb4500</leader><controlfield tag="001">BV042422620</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230508 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642558641</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-55864-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540401780</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-40178-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-55864-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869855157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422620</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Groß, Jürgen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Regression</subfield><subfield code="c">by Jürgen Groß</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 394p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">175</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In linear regression the ordinary least squares estimator plays a central role and sometimes one may get the impression that it is the only reasonable and applicable estimator available. Nonetheless, there exists a variety of alternatives, proving useful in specific situations. Purpose and Scope. This book aims at presenting a comprehensive survey of different point estimation methods in linear regression, along with the theoretical background on a advanced courses level. Besides its possible use as a companion for specific courses, it should be helpful for purposes of further reading, giving detailed explanations on many topics in this field. Numerical examples and graphics will aid to deepen the insight into the specifics of the presented methods. For the purpose of self-containment, the basic theory of linear regression models and least squares is presented. The fundamentals of decision theory and matrix algebra are also included. Some prior basic knowledge, however, appears to be necessary for easy reading and understanding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Regression</subfield><subfield code="0">(DE-588)4167709-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Regression</subfield><subfield code="0">(DE-588)4167709-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">175</subfield><subfield code="w">(DE-604)BV036592911</subfield><subfield code="9">175</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-55864-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858037</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422620 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642558641 9783540401780 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858037 |
oclc_num | 869855157 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 394p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Lecture Notes in Statistics |
series2 | Lecture Notes in Statistics |
spelling | Groß, Jürgen Verfasser aut Linear Regression by Jürgen Groß Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XII, 394p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 175 0930-0325 In linear regression the ordinary least squares estimator plays a central role and sometimes one may get the impression that it is the only reasonable and applicable estimator available. Nonetheless, there exists a variety of alternatives, proving useful in specific situations. Purpose and Scope. This book aims at presenting a comprehensive survey of different point estimation methods in linear regression, along with the theoretical background on a advanced courses level. Besides its possible use as a companion for specific courses, it should be helpful for purposes of further reading, giving detailed explanations on many topics in this field. Numerical examples and graphics will aid to deepen the insight into the specifics of the presented methods. For the purpose of self-containment, the basic theory of linear regression models and least squares is presented. The fundamentals of decision theory and matrix algebra are also included. Some prior basic knowledge, however, appears to be necessary for easy reading and understanding Statistics Mathematical statistics Statistical Theory and Methods Statistik Lineare Regression (DE-588)4167709-2 gnd rswk-swf Lineare Regression (DE-588)4167709-2 s 1\p DE-604 Lecture Notes in Statistics 175 (DE-604)BV036592911 175 https://doi.org/10.1007/978-3-642-55864-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Groß, Jürgen Linear Regression Lecture Notes in Statistics Statistics Mathematical statistics Statistical Theory and Methods Statistik Lineare Regression (DE-588)4167709-2 gnd |
subject_GND | (DE-588)4167709-2 |
title | Linear Regression |
title_auth | Linear Regression |
title_exact_search | Linear Regression |
title_full | Linear Regression by Jürgen Groß |
title_fullStr | Linear Regression by Jürgen Groß |
title_full_unstemmed | Linear Regression by Jürgen Groß |
title_short | Linear Regression |
title_sort | linear regression |
topic | Statistics Mathematical statistics Statistical Theory and Methods Statistik Lineare Regression (DE-588)4167709-2 gnd |
topic_facet | Statistics Mathematical statistics Statistical Theory and Methods Statistik Lineare Regression |
url | https://doi.org/10.1007/978-3-642-55864-1 |
volume_link | (DE-604)BV036592911 |
work_keys_str_mv | AT großjurgen linearregression |