Computer Algebra Handbook: Foundations · Applications · Systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Two ideas lie gleaming on the jeweler's velvet. The first is the calculus, the sec ond, the algorithm. The calculus and the rich body of mathematical analysis to which it gave rise made modern science possible; but it has been the algorithm that has made possible the modern world. -David Berlinski, The Advent of the Algorithm First there was the concept of integers, then there were symbols for integers: I, II, III, 1111, fttt (what might be called a sticks and stones representation); I, II, III, IV, V (Roman numerals); 1, 2, 3, 4, 5 (Arabic numerals), etc. Then there were other concepts with symbols for them and algorithms (sometimes) for ma nipulating the new symbols. Then came collections of mathematical knowledge (tables of mathematical computations, theorems of general results). Soon after algorithms came devices that provided assistancefor carryingout computations. Then mathematical knowledge was organized and structured into several related concepts (and symbols): logic, algebra, analysis, topology, algebraic geometry, number theory, combinatorics, etc. This organization and abstraction lead to new algorithms and new fields like universal algebra. But always our symbol systems reflected and influenced our thinking, our concepts, and our algorithms |
Beschreibung: | 1 Online-Ressource (XX, 637 p) |
ISBN: | 9783642558269 9783642629884 |
DOI: | 10.1007/978-3-642-55826-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422619 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783642558269 |c Online |9 978-3-642-55826-9 | ||
020 | |a 9783642629884 |c Print |9 978-3-642-62988-4 | ||
024 | 7 | |a 10.1007/978-3-642-55826-9 |2 doi | |
035 | |a (OCoLC)1185253757 | ||
035 | |a (DE-599)BVBBV042422619 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Grabmeier, Johannes |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computer Algebra Handbook |b Foundations · Applications · Systems |c edited by Johannes Grabmeier, Erich Kaltofen, Volker Weispfenning |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XX, 637 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Two ideas lie gleaming on the jeweler's velvet. The first is the calculus, the sec ond, the algorithm. The calculus and the rich body of mathematical analysis to which it gave rise made modern science possible; but it has been the algorithm that has made possible the modern world. -David Berlinski, The Advent of the Algorithm First there was the concept of integers, then there were symbols for integers: I, II, III, 1111, fttt (what might be called a sticks and stones representation); I, II, III, IV, V (Roman numerals); 1, 2, 3, 4, 5 (Arabic numerals), etc. Then there were other concepts with symbols for them and algorithms (sometimes) for ma nipulating the new symbols. Then came collections of mathematical knowledge (tables of mathematical computations, theorems of general results). Soon after algorithms came devices that provided assistancefor carryingout computations. Then mathematical knowledge was organized and structured into several related concepts (and symbols): logic, algebra, analysis, topology, algebraic geometry, number theory, combinatorics, etc. This organization and abstraction lead to new algorithms and new fields like universal algebra. But always our symbol systems reflected and influenced our thinking, our concepts, and our algorithms | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra / Data processing | |
650 | 4 | |a Algebra | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Computer software | |
650 | 4 | |a Mathematical Software | |
650 | 4 | |a Symbolic and Algebraic Manipulation | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kaltofen, Erich |e Sonstige |4 oth | |
700 | 1 | |a Weispfenning, Volker |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-55826-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858036 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097309650944 |
---|---|
any_adam_object | |
author | Grabmeier, Johannes |
author_facet | Grabmeier, Johannes |
author_role | aut |
author_sort | Grabmeier, Johannes |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV042422619 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185253757 (DE-599)BVBBV042422619 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-3-642-55826-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03106nmm a2200529zc 4500</leader><controlfield tag="001">BV042422619</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642558269</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-55826-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642629884</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-62988-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-55826-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185253757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422619</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grabmeier, Johannes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer Algebra Handbook</subfield><subfield code="b">Foundations · Applications · Systems</subfield><subfield code="c">edited by Johannes Grabmeier, Erich Kaltofen, Volker Weispfenning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 637 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Two ideas lie gleaming on the jeweler's velvet. The first is the calculus, the sec ond, the algorithm. The calculus and the rich body of mathematical analysis to which it gave rise made modern science possible; but it has been the algorithm that has made possible the modern world. -David Berlinski, The Advent of the Algorithm First there was the concept of integers, then there were symbols for integers: I, II, III, 1111, fttt (what might be called a sticks and stones representation); I, II, III, IV, V (Roman numerals); 1, 2, 3, 4, 5 (Arabic numerals), etc. Then there were other concepts with symbols for them and algorithms (sometimes) for ma nipulating the new symbols. Then came collections of mathematical knowledge (tables of mathematical computations, theorems of general results). Soon after algorithms came devices that provided assistancefor carryingout computations. Then mathematical knowledge was organized and structured into several related concepts (and symbols): logic, algebra, analysis, topology, algebraic geometry, number theory, combinatorics, etc. This organization and abstraction lead to new algorithms and new fields like universal algebra. But always our symbol systems reflected and influenced our thinking, our concepts, and our algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaltofen, Erich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weispfenning, Volker</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-55826-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858036</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422619 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642558269 9783642629884 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858036 |
oclc_num | 1185253757 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 637 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Grabmeier, Johannes Verfasser aut Computer Algebra Handbook Foundations · Applications · Systems edited by Johannes Grabmeier, Erich Kaltofen, Volker Weispfenning Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XX, 637 p) txt rdacontent c rdamedia cr rdacarrier Two ideas lie gleaming on the jeweler's velvet. The first is the calculus, the sec ond, the algorithm. The calculus and the rich body of mathematical analysis to which it gave rise made modern science possible; but it has been the algorithm that has made possible the modern world. -David Berlinski, The Advent of the Algorithm First there was the concept of integers, then there were symbols for integers: I, II, III, 1111, fttt (what might be called a sticks and stones representation); I, II, III, IV, V (Roman numerals); 1, 2, 3, 4, 5 (Arabic numerals), etc. Then there were other concepts with symbols for them and algorithms (sometimes) for ma nipulating the new symbols. Then came collections of mathematical knowledge (tables of mathematical computations, theorems of general results). Soon after algorithms came devices that provided assistancefor carryingout computations. Then mathematical knowledge was organized and structured into several related concepts (and symbols): logic, algebra, analysis, topology, algebraic geometry, number theory, combinatorics, etc. This organization and abstraction lead to new algorithms and new fields like universal algebra. But always our symbol systems reflected and influenced our thinking, our concepts, and our algorithms Mathematics Algebra / Data processing Algebra Algorithms Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra (DE-588)4010449-7 gnd rswk-swf Computeralgebra (DE-588)4010449-7 s 1\p DE-604 Kaltofen, Erich Sonstige oth Weispfenning, Volker Sonstige oth https://doi.org/10.1007/978-3-642-55826-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Grabmeier, Johannes Computer Algebra Handbook Foundations · Applications · Systems Mathematics Algebra / Data processing Algebra Algorithms Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra (DE-588)4010449-7 gnd |
subject_GND | (DE-588)4010449-7 |
title | Computer Algebra Handbook Foundations · Applications · Systems |
title_auth | Computer Algebra Handbook Foundations · Applications · Systems |
title_exact_search | Computer Algebra Handbook Foundations · Applications · Systems |
title_full | Computer Algebra Handbook Foundations · Applications · Systems edited by Johannes Grabmeier, Erich Kaltofen, Volker Weispfenning |
title_fullStr | Computer Algebra Handbook Foundations · Applications · Systems edited by Johannes Grabmeier, Erich Kaltofen, Volker Weispfenning |
title_full_unstemmed | Computer Algebra Handbook Foundations · Applications · Systems edited by Johannes Grabmeier, Erich Kaltofen, Volker Weispfenning |
title_short | Computer Algebra Handbook |
title_sort | computer algebra handbook foundations applications systems |
title_sub | Foundations · Applications · Systems |
topic | Mathematics Algebra / Data processing Algebra Algorithms Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra (DE-588)4010449-7 gnd |
topic_facet | Mathematics Algebra / Data processing Algebra Algorithms Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra |
url | https://doi.org/10.1007/978-3-642-55826-9 |
work_keys_str_mv | AT grabmeierjohannes computeralgebrahandbookfoundationsapplicationssystems AT kaltofenerich computeralgebrahandbookfoundationsapplicationssystems AT weispfenningvolker computeralgebrahandbookfoundationsapplicationssystems |